BiomoleculesPub Date : 2025-02-15DOI: 10.3390/biom15020292
Seda Yakut, Merve Karabulut, Recep Hakkı Koca, Elif Erbaş, Seçkin Özkanlar, Berrin Tarakçı Gençer, Adem Kara, K J Senthil Kumar
{"title":"Protective Effects of Bromelain in Testicular Torsion-Detorsion: Reducing Inflammation, Oxidative Stress, and Apoptosis While Enhancing Sperm Quality.","authors":"Seda Yakut, Merve Karabulut, Recep Hakkı Koca, Elif Erbaş, Seçkin Özkanlar, Berrin Tarakçı Gençer, Adem Kara, K J Senthil Kumar","doi":"10.3390/biom15020292","DOIUrl":"10.3390/biom15020292","url":null,"abstract":"<p><p>Inflammation and increased oxidative stress in testicular tissue are documented side effects of torsion of the testicles. The preventive role of Bromelain (Bro) against testicle torsion-induced ischemia/reperfusion (I/R) injury was investigated in this research. Five groups of six animals each were created: ischemia, Ischemia+Reperfusion (I+R), Ischemia+Reperfusion+Bromelain (I+R+Bro; 10 mg/kg), control (sham), and Bromelain (Bro; 10 mg/kg). An I/R damage resulted from two hours of 720° clockwise twisting of the left testis. Blood samples and epididymal sperm were collected after reperfusion to analyze sperm parameters (recovery, motility, viability, and morphology) and cytokines that promote inflammation (IL-1β, IL-6, and TNF-α). Using Western blotting, testicular tissue was examined for histopathological alterations, antioxidant enzymes (GSH, SOD), lipid peroxidation (MDA), apoptosis, and survival-related proteins (TLR4, Caspase-3, Bcl-2, NRF-2, HO-1, PI3K, mTOR, AKT-1). While raising the activities of GSH and SOD, two antioxidant enzymes, Bro administration dramatically reduced MDA concentrations. The I+R+Bro group had significantly reduced amounts of cytokines that promoted inflammation compared to the I+R group. Bro's protective properties are also attributed to proteins that are altered by it and participate in the apoptosis and survival of cells. Sperm morphology, motility, and concentration notably improved in the bromelain-treated group, according to spermatological examination. Testicular samples treated with bromelain showed less tissue damage according to histological evaluations than the untreated I+R group. These findings imply that Bro has anti-inflammatory, anti-apoptotic, and antioxidant qualities. It effectively reduces oxidative stress and inflammation by modulating the PI3K/Akt/mTOR and NRF-2/HO-1 pathways, hence minimizing I/R injury.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020280
Evgeniya E Burkova, Irina A Bakhno
{"title":"Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein.","authors":"Evgeniya E Burkova, Irina A Bakhno","doi":"10.3390/biom15020280","DOIUrl":"10.3390/biom15020280","url":null,"abstract":"<p><p>Spike protein is a surface glycoprotein of the SARS-CoV-2 coronavirus, providing interaction of the coronavirus with angiotensin-converting enzyme 2 (ACE2) on the host cell. The cytoplasmic tail of the S protein plays an important role in an intracellular transport and translocation of the glycoprotein to the plasma membrane. The cytoplasmic domain of the S protein contains binding sites for COPI, COPII, and SNX27, which are required for the intracellular trafficking of this glycoprotein. In addition, the cytoplasmic domain of the S protein contains S-palmitoylation sites. S-palmitoylation increases the hydrophobicity of the S protein by regulating its transport to the plasma membrane. The cytoplasmic tail of the S protein has a signaling sequence that provides interaction with the ERM family proteins, which may mediate communication between the cell membrane and the actin cytoskeleton. This review examines the role of the cytoplasmic tail of the SARS-CoV-2 S protein in its intracellular transport and translocation to the plasma membrane. Understanding these processes is necessary not only for the development of vaccines based on mRNA or adenovirus vectors encoding the full-length spike (S) protein, but also for the therapy of the new coronavirus infection (COVID-19).</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020289
Munkhzaya Byambaragchaa, Sei Hyen Park, Myung-Hum Park, Myung-Hwa Kang, Kwan-Sik Min
{"title":"Enhanced Production and Functional Characterization of Recombinant Equine Chorionic Gonadotropin (rec-eCG) in CHO-DG44 Cells.","authors":"Munkhzaya Byambaragchaa, Sei Hyen Park, Myung-Hum Park, Myung-Hwa Kang, Kwan-Sik Min","doi":"10.3390/biom15020289","DOIUrl":"10.3390/biom15020289","url":null,"abstract":"<p><p>Equine chorionic gonadotropin (eCG) hormone, comprising highly glycosylated α- and β-subunits, elicits responses similar to follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in non-equid species. This study aimed to establish a mass production of recombinant eCG (rec-eCG) using CHO DG44 cells. Single-chain rec-eCG β/α was expressed in CHO DG44 cells. FSH- and LH-like activities were evaluated in CHO-K1 and HEK 293 cells expressing the equine LH/CG receptor (eLH/CGR), rat LH/CGR (rLH/CGR), and rFSHR. pERK1/2 activation and β-arrestin 2 recruitment were assessed in PathHunter CHO-K1 cells. The expression from one, among nine isolates, peaked at 364-470 IU/mL on days 9 and 11. The molecular weight of rec-eCG β/α ranged from 40 to 47 kDa, with two distinct bands. PNGase F treatment reduced the molecular weight by 8-10 kDa, indicating N-glycosylation. Rec-eCG β/α demonstrated dose-responsive cAMP activity in cells expressing eLH/CGR, with enhanced potency in rLH/CGR and rFSHR. Phospho-ERK1/2 activation peaked at 5 min before declining rapidly. β-arrestin 2 recruitment was receptor-mediated in cells expressing hFSHR and hLH/CGR. This study provides insights into the mechanisms underlying eCG's FSH- and LH-like activities. Stable CHO DG44 cells can produce large quantities of rec-eCG. eCG activates pERK1/2 signaling via the PKA/cAMP pathway and facilitates β-arrestin 2 recruitment.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020288
Amelie B Fleischer, Barbara Amann, Christine von Toerne, Roxane L Degroote, Adrian Schmalen, Tanja Weißer, Stefanie M Hauck, Cornelia A Deeg
{"title":"Differential Expression of ARG1 and MRC2 in Retinal Müller Glial Cells During Autoimmune Uveitis.","authors":"Amelie B Fleischer, Barbara Amann, Christine von Toerne, Roxane L Degroote, Adrian Schmalen, Tanja Weißer, Stefanie M Hauck, Cornelia A Deeg","doi":"10.3390/biom15020288","DOIUrl":"10.3390/biom15020288","url":null,"abstract":"<p><p>Retinal Müller glial cells (RMG) play a crucial role in retinal neuroinflammation, including autoimmune uveitis. Increasing evidence supports their function as active modulators of immune responses and potential atypical antigen-presenting cells (APCs). To further investigate this hypothesis, we conducted a differential proteome analysis of primary equine RMG from healthy controls and horses with equine recurrent uveitis (ERU), a spontaneous model of autoimmune uveitis. This analysis identified 310 proteins with differential abundance. Among these, the Major Histocompatibility Complex (MHC) class II and the enzyme Arginase 1 (ARG1) were significantly enriched in RMG from uveitis-affected horses, whereas Mannose Receptor C-type 2 (MRC2) and its interactor Thrombospondin 1 (THBS1) were more abundant in healthy RMG. The detection of MHC class II in equine RMG, consistent with previous studies, validates the robustness of our approach. Furthermore, the identification of ARG1 and MRC2, together with THBS1, provides new insights into the immunomodulatory and antigen-presenting properties of RMG. Immunohistochemical analyses confirmed the proteomic findings and revealed the spatial distribution of ARG1 and MRC2. ARG1 and MRC2 are thus markers for RMG in the neuroinflammatory or physiological milieu and highlight potential differences in the immune function of RMG, particularly in antigen presentation.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020284
Esposito Milena, Mandalà Maurizio
{"title":"Exploring the Cardiovascular Benefits of Extra Virgin Olive Oil: Insights into Mechanisms and Therapeutic Potential.","authors":"Esposito Milena, Mandalà Maurizio","doi":"10.3390/biom15020284","DOIUrl":"10.3390/biom15020284","url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, driven by complex interactions among genetic, environmental, and lifestyle factors, with diet playing a pivotal role. Extra Virgin Olive Oil (EVOO), a cornerstone of the Mediterranean diet (MedDiet), is a plant-based fat that has garnered attention for its robust cardiovascular benefits, which are attributed to its unique composition of monounsaturated fatty acids (MUFAs), particularly oleic acid (OA); and bioactive polyphenols, such as Hydroxytyrosol (HT) and oleocanthal. These compounds collectively exert antioxidant, anti-inflammatory, vasodilatory, and lipid-modulating effects. Numerous clinical and preclinical studies have demonstrated that EVOO's properties reduce major modifiable cardiovascular risk factors, including hypertension, dyslipidemia, obesity, and type 2 diabetes. EVOO also promotes endothelial function by increasing nitric oxide (NO) bioavailability, thus favoring vasodilation, lowering blood pressure (BP), and supporting vascular integrity. Furthermore, it modulates biomarkers of cardiovascular health, such as C-reactive protein, low-density lipoprotein (LDL) cholesterol, and NT-proBNP, aligning with improved hemostatic balance and reduced arterial vulnerability. Emerging evidence highlights its interaction with gut microbiota, further augmenting its cardioprotective effects. This review synthesizes current evidence, elucidating EVOO's multifaceted mechanisms of action and therapeutic potential. Future directions emphasize the need for advanced extraction techniques, nutraceutical formulations, and personalized dietary recommendations to maximize its health benefits. EVOO represents a valuable addition to dietary strategies aimed at reducing the global burden of cardiovascular diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity.","authors":"Wanzhen Li, Shengyuan Wang, Tongyangzi Zhang, Yiqing Zhu, Li Yu, Xianghuai Xu","doi":"10.3390/biom15020285","DOIUrl":"10.3390/biom15020285","url":null,"abstract":"<p><strong>Background: </strong>Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca<sup>2+</sup>-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4.</p><p><strong>Design and method: </strong>This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells.</p><p><strong>Results: </strong>The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (I<sub>ATP</sub>) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated current","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020283
Zhi-Qing Long, Ran Ding, Ting-Qiu Quan, Rui Xu, Zhuo-Hui Huang, Denghui Wei, Wei-Hong Zheng, Ying Sun
{"title":"Multi-Omics Characterization of Genome-Wide Abnormal DNA Methylation Reveals FGF5 as a Diagnosis of Nasopharyngeal Carcinoma Recurrence After Radiotherapy.","authors":"Zhi-Qing Long, Ran Ding, Ting-Qiu Quan, Rui Xu, Zhuo-Hui Huang, Denghui Wei, Wei-Hong Zheng, Ying Sun","doi":"10.3390/biom15020283","DOIUrl":"10.3390/biom15020283","url":null,"abstract":"<p><strong>Background: </strong>Aberrant expression and mutations in the fibroblast growth factor (FGF) family play crucial roles in cell differentiation, growth, and migration, contributing to tumor progression across various cancers. Nasopharyngeal carcinoma (NPC), a malignancy prevalent in East Asia, is primarily treated with radiotherapy; however, radioresistance remains a major challenge, leading to recurrence and poor outcomes. While FGFs are known to activate signaling pathways such as MAPK, PI3K/AKT, and JAK/STAT to promote cancer progression, the specific role of individual FGFs in NPC radioresistance remains unclear. Emerging evidence highlights <i>FGF5</i> as a key player in NPC progression, metastasis, and radioresistance, underscoring its potential as a therapeutic target to overcome treatment resistance and improve clinical outcomes.</p><p><strong>Methods: </strong>We analyzed single nucleotide variation (SNV) data, gene expression, and DNA methylation patterns using cancer datasets, including TCGA and GTEx, to investigate <i>FGF5</i> expression. Differentially expressed genes (DEGs) were identified and interpreted using functional enrichment analysis, while survival analysis and gene set enrichment analysis (GSEA) were conducted to identify clinical correlations. DNA methylation patterns were specifically assessed using the HumanMethylation850 BeadChips on tissue samples from nine recurrent and nine non-recurrent NPC patients. Functional assays, including cell viability, migration, invasion, and clonogenic survival assays, were performed to evaluate the effects of FGF5 on NPC cell behavior in vitro and in vivo.</p><p><strong>Results: </strong><i>FGF5</i> showed elevated SNV frequencies across multiple cancers, particularly in HNSC and NPC. DNA methylation analysis revealed an inverse relationship between <i>FGF5</i> expression and methylation levels in recurrent NPC tumors. Functional assays demonstrated that FGF5 enhances migration, invasion, and radioresistance in NPC cells. High FGF5 expression was associated with reduced distant metastasis-free survival (DMFS) and increased radioresistance, highlighting its role in metastatic progression and recurrence.</p><p><strong>Conclusions: </strong>FGF5 plays a significant role in the progression and recurrence of nasopharyngeal carcinoma. Its elevated expression correlates with increased migration, invasion, and radioresistance as well as reduced distant metastasis-free survival. These findings suggest that FGF5 contributes to the metastatic and recurrence potential of NPC, making it a potential target for therapeutic intervention in treating these cancers.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020286
Weiwei Lai, Li Liu, Shuhang Wang, Yancun Liu, Yanfen Chai
{"title":"Integrated Omics Insights into Dapagliflozin Effects in Sepsis-Induced Cardiomyopathy.","authors":"Weiwei Lai, Li Liu, Shuhang Wang, Yancun Liu, Yanfen Chai","doi":"10.3390/biom15020286","DOIUrl":"10.3390/biom15020286","url":null,"abstract":"<p><strong>Background: </strong>Sepsis-induced cardiomyopathy (SIC) is a life-threatening cardiac complication of sepsis with limited therapeutic options. Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has demonstrated cardioprotective effects in heart failure, but its role in mitigating sepsis-related cardiac dysfunction remains unclear.</p><p><strong>Methods: </strong>A retrospective cohort analysis was conducted to assess the impact of pre-hospital dapagliflozin use on major adverse cardiovascular events (MACEs) and survival in patients with SIC. Additionally, a murine SIC model was established using cecal ligation and puncture (CLP) to evaluate the effects of dapagliflozin on cardiac function, histopathology, and biomarkers of myocardial injury. Transcriptomic and metabolomic profiling, combined with multi-omics integration, was employed to elucidate the molecular mechanisms underlying dapagliflozin's cardioprotective effects.</p><p><strong>Results: </strong>In the clinical cohort, pre-hospital dapagliflozin use was associated with a significant reduction in the risk of MACE and improved survival outcomes. In the murine SIC model, dapagliflozin restored cardiac function, reduced biomarkers of myocardial injury, and alleviated histological damage. Multi-omics analysis revealed that dapagliflozin modulates inflammatory responses, enhances autophagy, and regulates metabolic pathways such as AMPK signaling and lipid metabolism. Key regulatory genes and metabolites were identified, providing mechanistic insights into the underlying actions of dapagliflozin.</p><p><strong>Conclusions: </strong>Dapagliflozin significantly improves cardiac outcomes in sepsis-induced cardiomyopathy through the multi-level regulation of inflammation, energy metabolism, and cellular survival pathways. These findings establish dapagliflozin as a promising therapeutic strategy for SIC, offering translational insights into the treatment of sepsis-induced cardiac dysfunction.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibitor of Growth Proteins: Epigenetic Regulators Shaping Neurobiology.","authors":"Ziyue Xu, Hongyu Xu, Jichun Shi, Runming Liu, Xiang Li, Sha Liu, Wei Wei","doi":"10.3390/biom15020281","DOIUrl":"10.3390/biom15020281","url":null,"abstract":"<p><p>The inhibitor of growth (ING) family of proteins is emerging as a pivotal regulator of epigenetic modifications within the nervous system. These proteins are involved in various cellular processes, including apoptosis, cell cycle control, and DNA repair, through interactions with chromatin-modifying complexes. Recent studies underscore the dual role of ING proteins in both tumor suppression and neuronal differentiation, development, and neuroprotection. This review summarizes the epigenetic functions of ING proteins in neurobiology, with a focus on their involvement in neural development and their relevance to neuro-oncological diseases. We explore the mechanisms by which ING proteins influence chromatin state and gene expression, highlighting their interactions with histone acetyltransferases, deacetylases, histone methyltransferases, DNA modification enzymes, and non-coding RNAs. A deeper understanding of the role of ING proteins in epigenetic regulation in the nervous system may pave the way for novel therapeutic strategies targeting neurological disorders.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomoleculesPub Date : 2025-02-14DOI: 10.3390/biom15020290
Nadezhda Frolova, Daria Gorbach, Christian Ihling, Tatiana Bilova, Anastasia Orlova, Elena Lukasheva, Ksenia Fedoseeva, Irina Dodueva, Lyudmila A Lutova, Andrej Frolov
{"title":"Proteome and Metabolome Alterations in Radish (<i>Raphanus sativus</i> L.) Seedlings Induced by Inoculation with <i>Agrobacterium tumefaciens</i>.","authors":"Nadezhda Frolova, Daria Gorbach, Christian Ihling, Tatiana Bilova, Anastasia Orlova, Elena Lukasheva, Ksenia Fedoseeva, Irina Dodueva, Lyudmila A Lutova, Andrej Frolov","doi":"10.3390/biom15020290","DOIUrl":"10.3390/biom15020290","url":null,"abstract":"<p><p>Infection of higher plants with agrobacteria (<i>Agrobacterium tumefaciens</i>) represents one of the most comprehensively characterized examples of plant-microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and opine biosynthesis genes, as well as the host genes of hormone-mediated signaling. These transcriptional events trigger enhanced proliferation of plant cells and formation of crown gall tumors. Because of this, infection of plant tissues with <i>A. tumefaciens</i> provides a convenient model to address the dynamics of cell metabolism accompanying plant development. To date, both early and late plant responses to agrobacterial infection are well-characterized at the level of the transcriptome, whereas only little information on the accompanying changes in plant metabolism is available. Therefore, here we employ an integrated proteomics and metabolomics approach to address the metabolic shifts and molecular events accompanying plant responses to inoculation with the <i>A. tumefaciens</i> culture. Based on the acquired proteomics dataset complemented with the results of the metabolite profiling experiment, we succeeded in characterizing the metabolic shifts associated with agrobacterial infection. The observed dynamics of the seedling proteome and metabolome clearly indicated rearrangement of the energy metabolism on the 10th day after inoculation (d.a.i.). Specifically, redirection of the energy metabolism from the oxidative to the anaerobic pathway was observed. This might be a part of the plant's adaptation response to tumor-induced hypoxic stress, which most likely involved activation of sugar signaling.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}