{"title":"AARS1和AARS2:从蛋白质合成到乳酸化驱动的肿瘤发生。","authors":"Lingyue Gao, Jihua Guo, Rong Jia","doi":"10.3390/biom15091323","DOIUrl":null,"url":null,"abstract":"<p><p>Aminoacyl-tRNA synthetases (AARSs), traditionally recognized for their essential role in protein synthesis, are now emerging as critical players in cancer pathogenesis through translation-independent functions. Lactate-derived lactylation, a post-translational modification, plays an increasingly important role in tumorigenesis in the context of high levels of lactate in tumor cells due to the Warburg effect. Current research has highlighted AARS1/2 as lactate sensors and lactyltransferases that catalyze global lysine lactylation in cancer cells and promote cancer proliferation, providing a new perspective for cancer therapy. This review synthesizes the canonical and non-canonical functions of AARS1/2, with a particular focus on their lactylation-related mechanisms; details how lactylation acts as a mechanistic bridge linking AARS1/2 to diverse oncogenic signaling pathways, thereby promoting cancer hallmarks such as metabolic reprogramming, uncontrolled proliferation, immune escape, and therapy resistance; and proposes strategies to target AARS1/2 or modulate relative lactylation, offering a potential avenue to translate these insights into effective cancer therapies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467997/pdf/","citationCount":"0","resultStr":"{\"title\":\"AARS1 and AARS2: From Protein Synthesis to Lactylation-Driven Oncogenesis.\",\"authors\":\"Lingyue Gao, Jihua Guo, Rong Jia\",\"doi\":\"10.3390/biom15091323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aminoacyl-tRNA synthetases (AARSs), traditionally recognized for their essential role in protein synthesis, are now emerging as critical players in cancer pathogenesis through translation-independent functions. Lactate-derived lactylation, a post-translational modification, plays an increasingly important role in tumorigenesis in the context of high levels of lactate in tumor cells due to the Warburg effect. Current research has highlighted AARS1/2 as lactate sensors and lactyltransferases that catalyze global lysine lactylation in cancer cells and promote cancer proliferation, providing a new perspective for cancer therapy. This review synthesizes the canonical and non-canonical functions of AARS1/2, with a particular focus on their lactylation-related mechanisms; details how lactylation acts as a mechanistic bridge linking AARS1/2 to diverse oncogenic signaling pathways, thereby promoting cancer hallmarks such as metabolic reprogramming, uncontrolled proliferation, immune escape, and therapy resistance; and proposes strategies to target AARS1/2 or modulate relative lactylation, offering a potential avenue to translate these insights into effective cancer therapies.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15091323\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091323","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
AARS1 and AARS2: From Protein Synthesis to Lactylation-Driven Oncogenesis.
Aminoacyl-tRNA synthetases (AARSs), traditionally recognized for their essential role in protein synthesis, are now emerging as critical players in cancer pathogenesis through translation-independent functions. Lactate-derived lactylation, a post-translational modification, plays an increasingly important role in tumorigenesis in the context of high levels of lactate in tumor cells due to the Warburg effect. Current research has highlighted AARS1/2 as lactate sensors and lactyltransferases that catalyze global lysine lactylation in cancer cells and promote cancer proliferation, providing a new perspective for cancer therapy. This review synthesizes the canonical and non-canonical functions of AARS1/2, with a particular focus on their lactylation-related mechanisms; details how lactylation acts as a mechanistic bridge linking AARS1/2 to diverse oncogenic signaling pathways, thereby promoting cancer hallmarks such as metabolic reprogramming, uncontrolled proliferation, immune escape, and therapy resistance; and proposes strategies to target AARS1/2 or modulate relative lactylation, offering a potential avenue to translate these insights into effective cancer therapies.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.