Biometrics最新文献

筛选
英文 中文
Multiply robust estimation of marginal structural models in observational studies subject to covariate-driven observations. 在观测研究中,对受协变因素驱动的观测结果进行边际结构模型的多重稳健估计。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae065
Janie Coulombe, Shu Yang
{"title":"Multiply robust estimation of marginal structural models in observational studies subject to covariate-driven observations.","authors":"Janie Coulombe, Shu Yang","doi":"10.1093/biomtc/ujae065","DOIUrl":"10.1093/biomtc/ujae065","url":null,"abstract":"<p><p>Electronic health records and other sources of observational data are increasingly used for drawing causal inferences. The estimation of a causal effect using these data not meant for research purposes is subject to confounding and irregularly-spaced covariate-driven observation times affecting the inference. A doubly-weighted estimator accounting for these features has previously been proposed that relies on the correct specification of two nuisance models used for the weights. In this work, we propose a novel consistent multiply robust estimator and demonstrate analytically and in comprehensive simulation studies that it is more flexible and more efficient than the only alternative estimator proposed for the same setting. It is further applied to data from the Add Health study in the United States to estimate the causal effect of therapy counseling on alcohol consumption in American adolescents.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric second-order estimation for spatiotemporal point patterns. 时空点模式的非参数二阶估计。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae071
Decai Liang, Jialing Liu, Ye Shen, Yongtao Guan
{"title":"Nonparametric second-order estimation for spatiotemporal point patterns.","authors":"Decai Liang, Jialing Liu, Ye Shen, Yongtao Guan","doi":"10.1093/biomtc/ujae071","DOIUrl":"https://doi.org/10.1093/biomtc/ujae071","url":null,"abstract":"<p><p>Many existing methodologies for analyzing spatiotemporal point patterns are developed based on the assumption of stationarity in both space and time for the second-order intensity or pair correlation. In practice, however, such an assumption often lacks validity or proves to be unrealistic. In this paper, we propose a novel and flexible nonparametric approach for estimating the second-order characteristics of spatiotemporal point processes, accommodating non-stationary temporal correlations. Our proposed method employs kernel smoothing and effectively accounts for spatial and temporal correlations differently. Under a spatially increasing-domain asymptotic framework, we establish consistency of the proposed estimators, which can be constructed using different first-order intensity estimators to enhance practicality. Simulation results reveal that our method, in comparison with existing approaches, significantly improves statistical efficiency. An application to a COVID-19 dataset further illustrates the flexibility and interpretability of our procedure.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint structure learning and causal effect estimation for categorical graphical models. 分类图形模型的联合结构学习和因果效应估计
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae067
Federico Castelletti, Guido Consonni, Marco L Della Vedova
{"title":"Joint structure learning and causal effect estimation for categorical graphical models.","authors":"Federico Castelletti, Guido Consonni, Marco L Della Vedova","doi":"10.1093/biomtc/ujae067","DOIUrl":"https://doi.org/10.1093/biomtc/ujae067","url":null,"abstract":"<p><p>The scope of this paper is a multivariate setting involving categorical variables. Following an external manipulation of one variable, the goal is to evaluate the causal effect on an outcome of interest. A typical scenario involves a system of variables representing lifestyle, physical and mental features, symptoms, and risk factors, with the outcome being the presence or absence of a disease. These variables are interconnected in complex ways, allowing the effect of an intervention to propagate through multiple paths. A distinctive feature of our approach is the estimation of causal effects while accounting for uncertainty in both the dependence structure, which we represent through a directed acyclic graph (DAG), and the DAG-model parameters. Specifically, we propose a Markov chain Monte Carlo algorithm that targets the joint posterior over DAGs and parameters, based on an efficient reversible-jump proposal scheme. We validate our method through extensive simulation studies and demonstrate that it outperforms current state-of-the-art procedures in terms of estimation accuracy. Finally, we apply our methodology to analyze a dataset on depression and anxiety in undergraduate students.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data. 用于分析空间解析转录组学数据的带特征选择的可解释贝叶斯聚类方法。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae066
Huimin Li, Bencong Zhu, Xi Jiang, Lei Guo, Yang Xie, Lin Xu, Qiwei Li
{"title":"An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data.","authors":"Huimin Li, Bencong Zhu, Xi Jiang, Lei Guo, Yang Xie, Lin Xu, Qiwei Li","doi":"10.1093/biomtc/ujae066","DOIUrl":"10.1093/biomtc/ujae066","url":null,"abstract":"<p><p>Recent breakthroughs in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive molecular characterization at the spot or cellular level while preserving spatial information. Cells are the fundamental building blocks of tissues, organized into distinct yet connected components. Although many non-spatial and spatial clustering approaches have been used to partition the entire region into mutually exclusive spatial domains based on the SRT high-dimensional molecular profile, most require an ad hoc selection of less interpretable dimensional-reduction techniques. To overcome this challenge, we propose a zero-inflated negative binomial mixture model to cluster spots or cells based on their molecular profiles. To increase interpretability, we employ a feature selection mechanism to provide a low-dimensional summary of the SRT molecular profile in terms of discriminating genes that shed light on the clustering result. We further incorporate the SRT geospatial profile via a Markov random field prior. We demonstrate how this joint modeling strategy improves clustering accuracy, compared with alternative state-of-the-art approaches, through simulation studies and 3 real data applications.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multivariate Bernoulli detector: change point estimation in discrete survival analysis. 多元伯努利检测器:离散生存分析中的变化点估计。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae075
Willem van den Boom, Maria De Iorio, Fang Qian, Alessandra Guglielmi
{"title":"The multivariate Bernoulli detector: change point estimation in discrete survival analysis.","authors":"Willem van den Boom, Maria De Iorio, Fang Qian, Alessandra Guglielmi","doi":"10.1093/biomtc/ujae075","DOIUrl":"https://doi.org/10.1093/biomtc/ujae075","url":null,"abstract":"<p><p>Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards automated animal density estimation with acoustic spatial capture-recapture. 利用声学空间捕获-再捕获技术实现动物密度自动估算。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae081
Yuheng Wang, Juan Ye, Xiaohui Li, David L Borchers
{"title":"Towards automated animal density estimation with acoustic spatial capture-recapture.","authors":"Yuheng Wang, Juan Ye, Xiaohui Li, David L Borchers","doi":"10.1093/biomtc/ujae081","DOIUrl":"https://doi.org/10.1093/biomtc/ujae081","url":null,"abstract":"<p><p>Passive acoustic monitoring can be an effective way of monitoring wildlife populations that are acoustically active but difficult to survey visually, but identifying target species calls in recordings is non-trivial. Machine learning (ML) techniques can do detection quickly but may miss calls and produce false positives, i.e., misidentify calls from other sources as being from the target species. While abundance estimation methods can address the former issue effectively, methods to deal with false positives are under-investigated. We propose an acoustic spatial capture-recapture (ASCR) method that deals with false positives by treating species identity as a latent variable. Individual-level outputs from ML techniques are treated as random variables whose distributions depend on the latent identity. This gives rise to a mixture model likelihood that we maximize to estimate call density. We compare our method to existing methods by applying it to an ASCR survey of frogs and simulated acoustic surveys of gibbons based on real gibbon acoustic data. Estimates from our method are closer to ASCR applied to the dataset without false positives than those from a widely used false positive \"correction factor\" method. Simulations show our method to have bias close to zero and accurate coverage probabilities and to perform substantially better than ASCR without accounting for false positives.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing for similarity of multivariate mixed outcomes using generalized joint regression models with application to efficacy-toxicity responses. 利用广义联合回归模型测试多变量混合结果的相似性,并将其应用于疗效-毒性反应。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae077
Niklas Hagemann, Giampiero Marra, Frank Bretz, Kathrin Möllenhoff
{"title":"Testing for similarity of multivariate mixed outcomes using generalized joint regression models with application to efficacy-toxicity responses.","authors":"Niklas Hagemann, Giampiero Marra, Frank Bretz, Kathrin Möllenhoff","doi":"10.1093/biomtc/ujae077","DOIUrl":"https://doi.org/10.1093/biomtc/ujae077","url":null,"abstract":"<p><p>A common problem in clinical trials is to test whether the effect of an explanatory variable on a response of interest is similar between two groups, for example, patient or treatment groups. In this regard, similarity is defined as equivalence up to a pre-specified threshold that denotes an acceptable deviation between the two groups. This issue is typically tackled by assessing if the explanatory variable's effect on the response is similar. This assessment is based on, for example, confidence intervals of differences or a suitable distance between two parametric regression models. Typically, these approaches build on the assumption of a univariate continuous or binary outcome variable. However, multivariate outcomes, especially beyond the case of bivariate binary responses, remain underexplored. This paper introduces an approach based on a generalized joint regression framework exploiting the Gaussian copula. Compared to existing methods, our approach accommodates various outcome variable scales, such as continuous, binary, categorical, and ordinal, including mixed outcomes in multi-dimensional spaces. We demonstrate the validity of this approach through a simulation study and an efficacy-toxicity case study, hence highlighting its practical relevance.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summary statistics knockoffs inference with family-wise error rate control. 利用族智误差率控制进行汇总统计山寨推理。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae082
Catherine Xinrui Yu, Jiaqi Gu, Zhaomeng Chen, Zihuai He
{"title":"Summary statistics knockoffs inference with family-wise error rate control.","authors":"Catherine Xinrui Yu, Jiaqi Gu, Zhaomeng Chen, Zihuai He","doi":"10.1093/biomtc/ujae082","DOIUrl":"10.1093/biomtc/ujae082","url":null,"abstract":"<p><p>Testing multiple hypotheses of conditional independence with provable error rate control is a fundamental problem with various applications. To infer conditional independence with family-wise error rate (FWER) control when only summary statistics of marginal dependence are accessible, we adopt GhostKnockoff to directly generate knockoff copies of summary statistics and propose a new filter to select features conditionally dependent on the response. In addition, we develop a computationally efficient algorithm to greatly reduce the computational cost of knockoff copies generation without sacrificing power and FWER control. Experiments on simulated data and a real dataset of Alzheimer's disease genetics demonstrate the advantage of the proposed method over existing alternatives in both statistical power and computational efficiency.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiparametric inference of effective reproduction number dynamics from wastewater pathogen surveillance data. 从废水病原体监测数据中推断有效繁殖数量动态的半参数。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae074
Isaac H Goldstein, Daniel M Parker, Sunny Jiang, Volodymyr M Minin
{"title":"Semiparametric inference of effective reproduction number dynamics from wastewater pathogen surveillance data.","authors":"Isaac H Goldstein, Daniel M Parker, Sunny Jiang, Volodymyr M Minin","doi":"10.1093/biomtc/ujae074","DOIUrl":"10.1093/biomtc/ujae074","url":null,"abstract":"<p><p>Concentrations of pathogen genomes measured in wastewater have recently become available as a new data source to use when modeling the spread of infectious diseases. One promising use for this data source is inference of the effective reproduction number, the average number of individuals a newly infected person will infect. We propose a model where new infections arrive according to a time-varying immigration rate which can be interpreted as an average number of secondary infections produced by one infectious individual per unit time. This model allows us to estimate the effective reproduction number from concentrations of pathogen genomes, while avoiding difficulty to verify assumptions about the dynamics of the susceptible population. As a byproduct of our primary goal, we also produce a new model for estimating the effective reproduction number from case data using the same framework. We test this modeling framework in an agent-based simulation study with a realistic data generating mechanism which accounts for the time-varying dynamics of pathogen shedding. Finally, we apply our new model to estimating the effective reproduction number of SARS-CoV-2, the causative agent of COVID-19, in Los Angeles, CA, using pathogen RNA concentrations collected from a large wastewater treatment facility.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PathGPS: discover shared genetic architecture using GWAS summary data. PathGPS:利用 GWAS 摘要数据发现共享遗传结构。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-07-01 DOI: 10.1093/biomtc/ujae060
Zijun Gao, Qingyuan Zhao, Trevor Hastie
{"title":"PathGPS: discover shared genetic architecture using GWAS summary data.","authors":"Zijun Gao, Qingyuan Zhao, Trevor Hastie","doi":"10.1093/biomtc/ujae060","DOIUrl":"10.1093/biomtc/ujae060","url":null,"abstract":"<p><p>The increasing availability and scale of biobanks and \"omic\" datasets bring new horizons for understanding biological mechanisms. PathGPS is an exploratory data analysis tool to discover genetic architectures using Genome Wide Association Studies (GWAS) summary data. PathGPS is based on a linear structural equation model where traits are regulated by both genetic and environmental pathways. PathGPS decouples the genetic and environmental components by contrasting the GWAS associations of \"signal\" genes with those of \"noise\" genes. From the estimated genetic component, PathGPS then extracts genetic pathways via principal component and factor analysis, leveraging the low-rank and sparse properties. In addition, we provide a bootstrap aggregating (\"bagging\") algorithm to improve stability under data perturbation and hyperparameter tuning. When applied to a metabolomics dataset and the UK Biobank, PathGPS confirms several known gene-trait clusters and suggests multiple new hypotheses for future investigations.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信