{"title":"用元学习方法估计因果偏移效应以评估时变适度。","authors":"Jieru Shi, Walter Dempsey","doi":"10.1093/biomtc/ujaf129","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in wearable technologies and health interventions delivered by smartphones have greatly increased the accessibility of mobile health (mHealth) interventions. Micro-randomized trials (MRTs) are designed to assess the effectiveness of the mHealth intervention and introduce a novel class of causal estimands called \"causal excursion effects.\" These estimands enable the evaluation of how intervention effects change over time and are influenced by individual characteristics or context. Existing methods for analyzing causal excursion effects assume known randomization probabilities, complete observations, and a linear nuisance function with prespecified features of the high-dimensional observed history. However, in complex mobile systems, these assumptions often fall short: randomization probabilities can be uncertain, observations may be incomplete, and the granularity of mHealth data makes linear modeling difficult. To address this issue, we propose a flexible and doubly robust inferential procedure, called \"DR-WCLS,\" for estimating causal excursion effects from a meta-learner perspective. We present the bidirectional asymptotic properties of the proposed estimators and compare them with existing methods both theoretically and through extensive simulations. The results show a consistent and more efficient estimate, even with missing observations or uncertain treatment randomization probabilities. Finally, the practical utility of the proposed methods is demonstrated by analyzing data from a multi-institution cohort of first-year medical residents in the United States.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meta-learning method for estimation of causal excursion effects to assess time-varying moderation.\",\"authors\":\"Jieru Shi, Walter Dempsey\",\"doi\":\"10.1093/biomtc/ujaf129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in wearable technologies and health interventions delivered by smartphones have greatly increased the accessibility of mobile health (mHealth) interventions. Micro-randomized trials (MRTs) are designed to assess the effectiveness of the mHealth intervention and introduce a novel class of causal estimands called \\\"causal excursion effects.\\\" These estimands enable the evaluation of how intervention effects change over time and are influenced by individual characteristics or context. Existing methods for analyzing causal excursion effects assume known randomization probabilities, complete observations, and a linear nuisance function with prespecified features of the high-dimensional observed history. However, in complex mobile systems, these assumptions often fall short: randomization probabilities can be uncertain, observations may be incomplete, and the granularity of mHealth data makes linear modeling difficult. To address this issue, we propose a flexible and doubly robust inferential procedure, called \\\"DR-WCLS,\\\" for estimating causal excursion effects from a meta-learner perspective. We present the bidirectional asymptotic properties of the proposed estimators and compare them with existing methods both theoretically and through extensive simulations. The results show a consistent and more efficient estimate, even with missing observations or uncertain treatment randomization probabilities. Finally, the practical utility of the proposed methods is demonstrated by analyzing data from a multi-institution cohort of first-year medical residents in the United States.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf129\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf129","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
A meta-learning method for estimation of causal excursion effects to assess time-varying moderation.
Advances in wearable technologies and health interventions delivered by smartphones have greatly increased the accessibility of mobile health (mHealth) interventions. Micro-randomized trials (MRTs) are designed to assess the effectiveness of the mHealth intervention and introduce a novel class of causal estimands called "causal excursion effects." These estimands enable the evaluation of how intervention effects change over time and are influenced by individual characteristics or context. Existing methods for analyzing causal excursion effects assume known randomization probabilities, complete observations, and a linear nuisance function with prespecified features of the high-dimensional observed history. However, in complex mobile systems, these assumptions often fall short: randomization probabilities can be uncertain, observations may be incomplete, and the granularity of mHealth data makes linear modeling difficult. To address this issue, we propose a flexible and doubly robust inferential procedure, called "DR-WCLS," for estimating causal excursion effects from a meta-learner perspective. We present the bidirectional asymptotic properties of the proposed estimators and compare them with existing methods both theoretically and through extensive simulations. The results show a consistent and more efficient estimate, even with missing observations or uncertain treatment randomization probabilities. Finally, the practical utility of the proposed methods is demonstrated by analyzing data from a multi-institution cohort of first-year medical residents in the United States.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.