BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae157
Yifei Hu, Xinge Jessie Jeng
{"title":"Spatially adaptive variable screening in presurgical functional magnetic resonance imaging data analysis.","authors":"Yifei Hu, Xinge Jessie Jeng","doi":"10.1093/biomtc/ujae157","DOIUrl":"https://doi.org/10.1093/biomtc/ujae157","url":null,"abstract":"<p><p>Accurate delineation of functional brain regions adjacent to tumors is imperative for planning neurosurgery that preserves critical functions. Functional magnetic resonance imaging (fMRI) plays an increasingly pivotal role in presurgical counseling and planning. In the analysis of presurgical fMRI data, the impact of false negatives on patients surpasses that of false positives because failure to identify functional regions and unintentionally resecting critical tissues can result in severe harm to patients. This paper introduces a novel metric, the Bayesian missed discovery rate (BMDR), designed for controlling false negatives within the voxel-specific mixture model. Building on the BMDR metric, we propose a new variable screening procedure that not only ensures effective control of false negatives but also capitalizes on the spatial structure of fMRI data. In comparison to existing statistical methods in fMRI data analysis, our new procedure directly regulates false negatives at a desirable level and is entirely data-driven. Moreover, it significantly differs from current false-negative control procedures by incorporating spatial information. Numerical examples demonstrate that the new method outperforms several state-of-the-art methods in retaining signal voxels, particularly the subtle ones at the boundaries of functional regions, while achieving a cleaner separation of functional regions from background noise. These findings hold promising implications for planning function-preserving neurosurgery.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae144
Muxuan Liang, Jaeyoung Park, Qing Lu, Xiang Zhong
{"title":"Robust and flexible learning of a high-dimensional classification rule using auxiliary outcomes.","authors":"Muxuan Liang, Jaeyoung Park, Qing Lu, Xiang Zhong","doi":"10.1093/biomtc/ujae144","DOIUrl":"https://doi.org/10.1093/biomtc/ujae144","url":null,"abstract":"<p><p>Correlated outcomes are common in many practical problems. In some settings, one outcome is of particular interest, and others are auxiliary. To leverage information shared by all the outcomes, traditional multi-task learning (MTL) minimizes an averaged loss function over all the outcomes, which may lead to biased estimation for the target outcome, especially when the MTL model is misspecified. In this work, based on a decomposition of estimation bias into two types, within-subspace and against-subspace, we develop a robust transfer learning approach to estimating a high-dimensional linear decision rule for the outcome of interest with the presence of auxiliary outcomes. The proposed method includes an MTL step using all outcomes to gain efficiency and a subsequent calibration step using only the outcome of interest to correct both types of biases. We show that the final estimator can achieve a lower estimation error than the one using only the single outcome of interest. Simulations and real data analysis are conducted to justify the superiority of the proposed method.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae141
Lara Maleyeff, Shirin Golchi, Erica E M Moodie, Marie Hudson
{"title":"An adaptive enrichment design using Bayesian model averaging for selection and threshold-identification of predictive variables.","authors":"Lara Maleyeff, Shirin Golchi, Erica E M Moodie, Marie Hudson","doi":"10.1093/biomtc/ujae141","DOIUrl":"10.1093/biomtc/ujae141","url":null,"abstract":"<p><p>Precision medicine is transforming healthcare by offering tailored treatments that enhance patient outcomes and reduce costs. As our understanding of complex diseases improves, clinical trials increasingly aim to detect subgroups of patients with enhanced treatment effects. Biomarker-driven adaptive enrichment designs, which initially enroll a broad population and later restrict to treatment-sensitive patients, are gaining popularity. However, current practice often assumes either pre-trial knowledge of biomarkers or a simple, linear relationship between continuous markers and treatment effectiveness. Motivated by a trial studying rheumatoid arthritis treatment, we propose a Bayesian adaptive enrichment design to identify predictive variables from a larger set of candidate biomarkers. Our approach uses a flexible modeling framework where the effects of continuous biomarkers are represented using free knot B-splines. We then estimate key parameters by marginalizing over all possible variable combinations using Bayesian model averaging. At interim analyses, we assess whether a biomarker-defined subgroup has enhanced or reduced treatment effects, allowing for early termination for efficacy or futility and restricting future enrollment to treatment-sensitive patients. We consider both pre-categorized and continuous biomarkers, the latter potentially having complex, nonlinear relationships to the outcome and treatment effect. Through simulations, we derive the operating characteristics of our design and compare its performance to existing methods.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae110
Fei Jiang, Ge Zhao, Rosa Rodriguez-Monguio, Yanyuan Ma
{"title":"Causal effect estimation in survival analysis with high dimensional confounders.","authors":"Fei Jiang, Ge Zhao, Rosa Rodriguez-Monguio, Yanyuan Ma","doi":"10.1093/biomtc/ujae110","DOIUrl":"10.1093/biomtc/ujae110","url":null,"abstract":"<p><p>With the ever advancing of modern technologies, it has become increasingly common that the number of collected confounders exceeds the number of subjects in a data set. However, matching based methods for estimating causal treatment effect in their original forms are not capable of handling high-dimensional confounders, and their various modified versions lack statistical support and valid inference tools. In this article, we propose a new approach for estimating causal treatment effect, defined as the difference of the restricted mean survival time (RMST) under different treatments in high-dimensional setting for survival data. We combine the factor model and the sufficient dimension reduction techniques to construct propensity score and prognostic score. Based on these scores, we develop a kernel based doubly robust estimator of the RMST difference. We demonstrate its link to matching and establish the consistency and asymptotic normality of the estimator. We illustrate our method by analyzing a dataset from a study aimed at comparing the effects of two alternative treatments on the RMST of patients with diffuse large B cell lymphoma.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae127
Yidong Zhou, Hans-Georg Müller
{"title":"Wasserstein regression with empirical measures and density estimation for sparse data.","authors":"Yidong Zhou, Hans-Georg Müller","doi":"10.1093/biomtc/ujae127","DOIUrl":"https://doi.org/10.1093/biomtc/ujae127","url":null,"abstract":"<p><p>The problem of modeling the relationship between univariate distributions and one or more explanatory variables lately has found increasing interest. Existing approaches proceed by substituting proxy estimated distributions for the typically unknown response distributions. These estimates are obtained from available data but are problematic when for some of the distributions only few data are available. Such situations are common in practice and cannot be addressed with currently available approaches, especially when one aims at density estimates. We show how this and other problems associated with density estimation such as tuning parameter selection and bias issues can be side-stepped when covariates are available. We also introduce a novel version of distribution-response regression that is based on empirical measures. By avoiding the preprocessing step of recovering complete individual response distributions, the proposed approach is applicable when the sample size available for each distribution varies and especially when it is small for some of the distributions but large for others. In this case, one can still obtain consistent distribution estimates even for distributions with only few data by gaining strength across the entire sample of distributions, while traditional approaches where distributions or densities are estimated individually fail, since sparsely sampled densities cannot be consistently estimated. The proposed model is demonstrated to outperform existing approaches through simulations and Environmental Influences on Child Health Outcomes data.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae119
Eva Biswas, Andee Kaplan, Mark S Kaiser, Daniel J Nordman
{"title":"A formal goodness-of-fit test for spatial binary Markov random field models.","authors":"Eva Biswas, Andee Kaplan, Mark S Kaiser, Daniel J Nordman","doi":"10.1093/biomtc/ujae119","DOIUrl":"https://doi.org/10.1093/biomtc/ujae119","url":null,"abstract":"<p><p>Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A complicating factor is that such models involve neighborhood specifications, which are difficult to assess for binary data. To address this, we propose a formal goodness-of-fit (GOF) test for diagnosing an MRF model for spatial binary values. The test statistic involves a type of conditional Moran's I based on the fitted conditional probabilities, which can detect departures in model form, including neighborhood structure. Numerical studies show that the GOF test can perform well in detecting deviations from a null model, with a focus on neighborhoods as a difficult issue. We illustrate the spatial test with an application to Besag's historical endive data as well as the breeding pattern of grasshopper sparrows across Iowa.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae122
Stephanie M Wu, Matthew R Williams, Terrance D Savitsky, Briana J K Stephenson
{"title":"Derivation of outcome-dependent dietary patterns for low-income women obtained from survey data using a supervised weighted overfitted latent class analysis.","authors":"Stephanie M Wu, Matthew R Williams, Terrance D Savitsky, Briana J K Stephenson","doi":"10.1093/biomtc/ujae122","DOIUrl":"10.1093/biomtc/ujae122","url":null,"abstract":"<p><p>Poor diet quality is a key modifiable risk factor for hypertension and disproportionately impacts low-income women. Analyzing diet-driven hypertensive outcomes in this demographic is challenging due to the complexity of dietary data and selection bias when the data come from surveys, a main data source for understanding diet-disease relationships in understudied populations. Supervised Bayesian model-based clustering methods summarize dietary data into latent patterns that holistically capture relationships among foods and a known health outcome but do not sufficiently account for complex survey design. This leads to biased estimation and inference and lack of generalizability of the patterns. To address this, we propose a supervised weighted overfitted latent class analysis (SWOLCA) based on a Bayesian pseudo-likelihood approach that integrates sampling weights into an exposure-outcome model for discrete data. Our model adjusts for stratification, clustering, and informative sampling, and handles modifying effects via interaction terms within a Markov chain Monte Carlo Gibbs sampling algorithm. Simulation studies confirm that the SWOLCA model exhibits good performance in terms of bias, precision, and coverage. Using data from the National Health and Nutrition Examination Survey (2015-2018), we demonstrate the utility of our model by characterizing dietary patterns associated with hypertensive outcomes among low-income women in the United States.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae152
Peter Norwood, Marie Davidian, Eric Laber
{"title":"Adaptive randomization methods for sequential multiple assignment randomized trials (smarts) via thompson sampling.","authors":"Peter Norwood, Marie Davidian, Eric Laber","doi":"10.1093/biomtc/ujae152","DOIUrl":"10.1093/biomtc/ujae152","url":null,"abstract":"<p><p>Response-adaptive randomization (RAR) has been studied extensively in conventional, single-stage clinical trials, where it has been shown to yield ethical and statistical benefits, especially in trials with many treatment arms. However, RAR and its potential benefits are understudied in sequential multiple assignment randomized trials (SMARTs), which are the gold-standard trial design for evaluation of multi-stage treatment regimes. We propose a suite of RAR algorithms for SMARTs based on Thompson Sampling (TS), a widely used RAR method in single-stage trials in which treatment randomization probabilities are aligned with the estimated probability that the treatment is optimal. We focus on two common objectives in SMARTs: (1) comparison of the regimes embedded in the trial and (2) estimation of an optimal embedded regime. We develop valid post-study inferential procedures for treatment regimes under the proposed algorithms. This is nontrivial, as even in single-stage settings standard estimators of an average treatment effect can have nonnormal asymptotic behavior under RAR. Our algorithms are the first for RAR in multi-stage trials that account for non-standard limiting behavior due to RAR. Empirical studies based on real-world SMARTs show that TS can improve in-trial subject outcomes without sacrificing efficiency for post-trial comparisons.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae149
Van Tuan Nguyen, Adeline Fermanian, Antoine Barbieri, Sarah Zohar, Anne-Sophie Jannot, Simon Bussy, Agathe Guilloux
{"title":"An efficient joint model for high dimensional longitudinal and survival data via generic association features.","authors":"Van Tuan Nguyen, Adeline Fermanian, Antoine Barbieri, Sarah Zohar, Anne-Sophie Jannot, Simon Bussy, Agathe Guilloux","doi":"10.1093/biomtc/ujae149","DOIUrl":"https://doi.org/10.1093/biomtc/ujae149","url":null,"abstract":"<p><p>This paper introduces a prognostic method called FLASH that addresses the problem of joint modeling of longitudinal data and censored durations when a large number of both longitudinal and time-independent features are available. In the literature, standard joint models are either of the shared random effect or joint latent class type. Combining ideas from both worlds and using appropriate regularization techniques, we define a new model with the ability to automatically identify significant prognostic longitudinal features in a high-dimensional context, which is of increasing importance in many areas such as personalized medicine or churn prediction. We develop an estimation methodology based on the expectation-maximization algorithm and provide an efficient implementation. The statistical performance of the method is demonstrated both in extensive Monte Carlo simulation studies and on publicly available medical datasets. Our method significantly outperforms the state-of-the-art joint models in terms of C-index in a so-called \"real-time\" prediction setting, with a computational speed that is orders of magnitude faster than competing methods. In addition, our model automatically identifies significant features that are relevant from a practical point of view, making it interpretable, which is of the greatest importance for a prognostic algorithm in healthcare.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometricsPub Date : 2024-10-03DOI: 10.1093/biomtc/ujae153
Huali Zhao, Tianying Wang
{"title":"Debiased high-dimensional regression calibration for errors-in-variables log-contrast models.","authors":"Huali Zhao, Tianying Wang","doi":"10.1093/biomtc/ujae153","DOIUrl":"https://doi.org/10.1093/biomtc/ujae153","url":null,"abstract":"<p><p>Motivated by the challenges in analyzing gut microbiome and metagenomic data, this work aims to tackle the issue of measurement errors in high-dimensional regression models that involve compositional covariates. This paper marks a pioneering effort in conducting statistical inference on high-dimensional compositional data affected by mismeasured or contaminated data. We introduce a calibration approach tailored for the linear log-contrast model. Under relatively lenient conditions regarding the sparsity level of the parameter, we have established the asymptotic normality of the estimator for inference. Numerical experiments and an application in microbiome study have demonstrated the efficacy of our high-dimensional calibration strategy in minimizing bias and achieving the expected coverage rates for confidence intervals. Moreover, the potential application of our proposed methodology extends well beyond compositional data, suggesting its adaptability for a wide range of research contexts.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}