Eva Biswas, Andee Kaplan, Mark S Kaiser, Daniel J Nordman
{"title":"空间二元马尔可夫随机场模型的正式拟合优度检验。","authors":"Eva Biswas, Andee Kaplan, Mark S Kaiser, Daniel J Nordman","doi":"10.1093/biomtc/ujae119","DOIUrl":null,"url":null,"abstract":"<p><p>Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A complicating factor is that such models involve neighborhood specifications, which are difficult to assess for binary data. To address this, we propose a formal goodness-of-fit (GOF) test for diagnosing an MRF model for spatial binary values. The test statistic involves a type of conditional Moran's I based on the fitted conditional probabilities, which can detect departures in model form, including neighborhood structure. Numerical studies show that the GOF test can perform well in detecting deviations from a null model, with a focus on neighborhoods as a difficult issue. We illustrate the spatial test with an application to Besag's historical endive data as well as the breeding pattern of grasshopper sparrows across Iowa.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A formal goodness-of-fit test for spatial binary Markov random field models.\",\"authors\":\"Eva Biswas, Andee Kaplan, Mark S Kaiser, Daniel J Nordman\",\"doi\":\"10.1093/biomtc/ujae119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A complicating factor is that such models involve neighborhood specifications, which are difficult to assess for binary data. To address this, we propose a formal goodness-of-fit (GOF) test for diagnosing an MRF model for spatial binary values. The test statistic involves a type of conditional Moran's I based on the fitted conditional probabilities, which can detect departures in model form, including neighborhood structure. Numerical studies show that the GOF test can perform well in detecting deviations from a null model, with a focus on neighborhoods as a difficult issue. We illustrate the spatial test with an application to Besag's historical endive data as well as the breeding pattern of grasshopper sparrows across Iowa.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae119\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
A formal goodness-of-fit test for spatial binary Markov random field models.
Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A complicating factor is that such models involve neighborhood specifications, which are difficult to assess for binary data. To address this, we propose a formal goodness-of-fit (GOF) test for diagnosing an MRF model for spatial binary values. The test statistic involves a type of conditional Moran's I based on the fitted conditional probabilities, which can detect departures in model form, including neighborhood structure. Numerical studies show that the GOF test can perform well in detecting deviations from a null model, with a focus on neighborhoods as a difficult issue. We illustrate the spatial test with an application to Besag's historical endive data as well as the breeding pattern of grasshopper sparrows across Iowa.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.