Stephanie M Wu, Matthew R Williams, Terrance D Savitsky, Briana J K Stephenson
{"title":"利用监督加权过度拟合潜类分析法,从调查数据中得出低收入妇女依赖结果的饮食模式。","authors":"Stephanie M Wu, Matthew R Williams, Terrance D Savitsky, Briana J K Stephenson","doi":"10.1093/biomtc/ujae122","DOIUrl":null,"url":null,"abstract":"<p><p>Poor diet quality is a key modifiable risk factor for hypertension and disproportionately impacts low-income women. Analyzing diet-driven hypertensive outcomes in this demographic is challenging due to the complexity of dietary data and selection bias when the data come from surveys, a main data source for understanding diet-disease relationships in understudied populations. Supervised Bayesian model-based clustering methods summarize dietary data into latent patterns that holistically capture relationships among foods and a known health outcome but do not sufficiently account for complex survey design. This leads to biased estimation and inference and lack of generalizability of the patterns. To address this, we propose a supervised weighted overfitted latent class analysis (SWOLCA) based on a Bayesian pseudo-likelihood approach that integrates sampling weights into an exposure-outcome model for discrete data. Our model adjusts for stratification, clustering, and informative sampling, and handles modifying effects via interaction terms within a Markov chain Monte Carlo Gibbs sampling algorithm. Simulation studies confirm that the SWOLCA model exhibits good performance in terms of bias, precision, and coverage. Using data from the National Health and Nutrition Examination Survey (2015-2018), we demonstrate the utility of our model by characterizing dietary patterns associated with hypertensive outcomes among low-income women in the United States.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Derivation of outcome-dependent dietary patterns for low-income women obtained from survey data using a supervised weighted overfitted latent class analysis.\",\"authors\":\"Stephanie M Wu, Matthew R Williams, Terrance D Savitsky, Briana J K Stephenson\",\"doi\":\"10.1093/biomtc/ujae122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poor diet quality is a key modifiable risk factor for hypertension and disproportionately impacts low-income women. Analyzing diet-driven hypertensive outcomes in this demographic is challenging due to the complexity of dietary data and selection bias when the data come from surveys, a main data source for understanding diet-disease relationships in understudied populations. Supervised Bayesian model-based clustering methods summarize dietary data into latent patterns that holistically capture relationships among foods and a known health outcome but do not sufficiently account for complex survey design. This leads to biased estimation and inference and lack of generalizability of the patterns. To address this, we propose a supervised weighted overfitted latent class analysis (SWOLCA) based on a Bayesian pseudo-likelihood approach that integrates sampling weights into an exposure-outcome model for discrete data. Our model adjusts for stratification, clustering, and informative sampling, and handles modifying effects via interaction terms within a Markov chain Monte Carlo Gibbs sampling algorithm. Simulation studies confirm that the SWOLCA model exhibits good performance in terms of bias, precision, and coverage. Using data from the National Health and Nutrition Examination Survey (2015-2018), we demonstrate the utility of our model by characterizing dietary patterns associated with hypertensive outcomes among low-income women in the United States.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae122\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae122","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Derivation of outcome-dependent dietary patterns for low-income women obtained from survey data using a supervised weighted overfitted latent class analysis.
Poor diet quality is a key modifiable risk factor for hypertension and disproportionately impacts low-income women. Analyzing diet-driven hypertensive outcomes in this demographic is challenging due to the complexity of dietary data and selection bias when the data come from surveys, a main data source for understanding diet-disease relationships in understudied populations. Supervised Bayesian model-based clustering methods summarize dietary data into latent patterns that holistically capture relationships among foods and a known health outcome but do not sufficiently account for complex survey design. This leads to biased estimation and inference and lack of generalizability of the patterns. To address this, we propose a supervised weighted overfitted latent class analysis (SWOLCA) based on a Bayesian pseudo-likelihood approach that integrates sampling weights into an exposure-outcome model for discrete data. Our model adjusts for stratification, clustering, and informative sampling, and handles modifying effects via interaction terms within a Markov chain Monte Carlo Gibbs sampling algorithm. Simulation studies confirm that the SWOLCA model exhibits good performance in terms of bias, precision, and coverage. Using data from the National Health and Nutrition Examination Survey (2015-2018), we demonstrate the utility of our model by characterizing dietary patterns associated with hypertensive outcomes among low-income women in the United States.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.