Statistical inference for heterogeneous treatment effect with right-censored data from synthesizing randomized clinical trials and real-world data.

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-10-08 DOI:10.1093/biomtc/ujaf131
Guangcai Mao, Shu Yang, Xiaofei Wang
{"title":"Statistical inference for heterogeneous treatment effect with right-censored data from synthesizing randomized clinical trials and real-world data.","authors":"Guangcai Mao, Shu Yang, Xiaofei Wang","doi":"10.1093/biomtc/ujaf131","DOIUrl":null,"url":null,"abstract":"<p><p>The heterogeneous treatment effect plays a crucial role in precision medicine. There is evidence that real-world data, even subject to biases, can be employed as supplementary evidence for randomized clinical trials to improve the statistical efficiency of the heterogeneous treatment effect estimation. In this paper, for survival data with right censoring, we consider estimating the heterogeneous treatment effect, defined as the difference of the treatment-specific conditional restricted mean survival times given covariates, by synthesizing evidence from randomized clinical trials and the real-world data with possible biases. We define an omnibus bias function to characterize the effect of biases caused by unmeasured confounders, censoring, and outcome heterogeneity, and further, identify it by combining the trial and real-world data. We propose a penalized sieve method to estimate the heterogeneous treatment effect and the bias function. We further study the theoretical properties of the proposed integrative estimators based on the theory of reproducing kernel Hilbert space and empirical process. The proposed methodology outperforms the approach solely based on the trial data through simulation studies and an integrative analysis of the data from a randomized trial and a real-world registry on early-stage non-small-cell lung cancer.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505326/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The heterogeneous treatment effect plays a crucial role in precision medicine. There is evidence that real-world data, even subject to biases, can be employed as supplementary evidence for randomized clinical trials to improve the statistical efficiency of the heterogeneous treatment effect estimation. In this paper, for survival data with right censoring, we consider estimating the heterogeneous treatment effect, defined as the difference of the treatment-specific conditional restricted mean survival times given covariates, by synthesizing evidence from randomized clinical trials and the real-world data with possible biases. We define an omnibus bias function to characterize the effect of biases caused by unmeasured confounders, censoring, and outcome heterogeneity, and further, identify it by combining the trial and real-world data. We propose a penalized sieve method to estimate the heterogeneous treatment effect and the bias function. We further study the theoretical properties of the proposed integrative estimators based on the theory of reproducing kernel Hilbert space and empirical process. The proposed methodology outperforms the approach solely based on the trial data through simulation studies and an integrative analysis of the data from a randomized trial and a real-world registry on early-stage non-small-cell lung cancer.

综合随机临床试验和真实世界数据的右删减数据对异质性治疗效果的统计推断。
治疗效果的异质性在精准医疗中起着至关重要的作用。有证据表明,即使存在偏倚,现实世界的数据也可以作为随机临床试验的补充证据,以提高异质性治疗效果估计的统计效率。在本文中,我们考虑通过综合随机临床试验和可能存在偏差的真实数据的证据来估计具有正确审查的生存数据的异质性治疗效果,其定义为给定协变量的治疗特异性条件限制平均生存时间的差异。我们定义了一个综合偏倚函数来描述由未测量的混杂因素、审查和结果异质性引起的偏倚的影响,并进一步通过结合试验和实际数据来识别它。我们提出了一种惩罚筛法来估计非均质处理效果和偏差函数。基于核希尔伯特空间再现理论和经验过程,进一步研究了所提综合估计量的理论性质。所提出的方法优于仅基于试验数据的方法,该方法通过模拟研究和对来自早期非小细胞肺癌的随机试验和真实世界登记的数据进行综合分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信