{"title":"剂量优化的随机优化选择设计。","authors":"Shuqi Wang, Ying Yuan, Suyu Liu","doi":"10.1093/biomtc/ujaf124","DOIUrl":null,"url":null,"abstract":"<p><p>The US Food and Drug Administration (FDA) launched Project Optimus to shift the objective of dose selection from the maximum tolerated dose to the optimal biological dose (OBD), optimizing the benefit-risk tradeoff. One approach recommended by the FDA's guidance is to conduct randomized trials comparing multiple doses. In this paper, using the selection design framework, we propose a Randomized Optimal SElection (ROSE) design, which minimizes sample size while ensuring the probability of correct selection of the OBD at pre-specified accuracy levels. The ROSE design is simple to implement, involving a straightforward comparison of the difference in response rates between two dose arms against a predetermined decision boundary. We further consider a two-stage ROSE design that allows for early selection of the OBD at the interim when there is sufficient evidence, further reducing the sample size. Simulation studies demonstrate that the ROSE design exhibits desirable operating characteristics in correctly identifying the OBD. A sample size of 15-40 patients per dosage arm typically results in a percentage of correct selection of the optimal dose ranging from 60% to 70%.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Randomized optimal selection design for dose optimization.\",\"authors\":\"Shuqi Wang, Ying Yuan, Suyu Liu\",\"doi\":\"10.1093/biomtc/ujaf124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The US Food and Drug Administration (FDA) launched Project Optimus to shift the objective of dose selection from the maximum tolerated dose to the optimal biological dose (OBD), optimizing the benefit-risk tradeoff. One approach recommended by the FDA's guidance is to conduct randomized trials comparing multiple doses. In this paper, using the selection design framework, we propose a Randomized Optimal SElection (ROSE) design, which minimizes sample size while ensuring the probability of correct selection of the OBD at pre-specified accuracy levels. The ROSE design is simple to implement, involving a straightforward comparison of the difference in response rates between two dose arms against a predetermined decision boundary. We further consider a two-stage ROSE design that allows for early selection of the OBD at the interim when there is sufficient evidence, further reducing the sample size. Simulation studies demonstrate that the ROSE design exhibits desirable operating characteristics in correctly identifying the OBD. A sample size of 15-40 patients per dosage arm typically results in a percentage of correct selection of the optimal dose ranging from 60% to 70%.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf124\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf124","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Randomized optimal selection design for dose optimization.
The US Food and Drug Administration (FDA) launched Project Optimus to shift the objective of dose selection from the maximum tolerated dose to the optimal biological dose (OBD), optimizing the benefit-risk tradeoff. One approach recommended by the FDA's guidance is to conduct randomized trials comparing multiple doses. In this paper, using the selection design framework, we propose a Randomized Optimal SElection (ROSE) design, which minimizes sample size while ensuring the probability of correct selection of the OBD at pre-specified accuracy levels. The ROSE design is simple to implement, involving a straightforward comparison of the difference in response rates between two dose arms against a predetermined decision boundary. We further consider a two-stage ROSE design that allows for early selection of the OBD at the interim when there is sufficient evidence, further reducing the sample size. Simulation studies demonstrate that the ROSE design exhibits desirable operating characteristics in correctly identifying the OBD. A sample size of 15-40 patients per dosage arm typically results in a percentage of correct selection of the optimal dose ranging from 60% to 70%.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.