BiogerontologyPub Date : 2024-04-09DOI: 10.1007/s10522-024-10099-6
Yangmin Xia, Hao Zhang, Xiangyi Wu, Ye Xu, Qian Tan
{"title":"Resveratrol activates autophagy and protects from UVA-induced photoaging in human skin fibroblasts and the skin of male mice by regulating the AMPK pathway","authors":"Yangmin Xia, Hao Zhang, Xiangyi Wu, Ye Xu, Qian Tan","doi":"10.1007/s10522-024-10099-6","DOIUrl":"https://doi.org/10.1007/s10522-024-10099-6","url":null,"abstract":"<p>Skin photoaging is mostly caused by ultraviolet A (UVA), although active medications to effectively counteract UVA-induced photoaging have not yet been created. Resveratrol, a naturally occurring polyphenol found in the skin of grapes, has been shown to have various biological functions such as anti-inflammatory and antioxidant characteristics. However, the role of resveratrol in UVA-induced photoaging has not been clarified. We investigated the mechanism of action of resveratrol by UVA irradiation of human skin fibroblasts (HSF) and innovatively modified a mouse model of photoaging. The results demonstrated that resveratrol promoted AMP-activated protein kinase (AMPK) phosphorylation to activate autophagy, reduce reactive oxygen species (ROS) production, inhibit apoptosis, and restore normal cell cycle to alleviate UVA-induced photoaging. In addition, subcutaneous injection of resveratrol not only improved the symptoms of roughness, erythema, and increased wrinkles in the skin of UVA photodamaged mice, but also alleviated epidermal hyperkeratosis and hyperpigmentation, reduced inflammatory responses, and inhibited collagen fiber degradation. In conclusion, our studies proved that resveratrol can treat UVA-induced photoaging and elucidated the possible molecular mechanisms involved, providing a new therapeutic strategy for future anti-aging.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"215 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-06DOI: 10.1007/s10522-024-10101-1
{"title":"Chronic trans fatty acid consumption shortens lifespan in male Drosophila melanogaster on a high-sugar and high-fat diet","authors":"","doi":"10.1007/s10522-024-10101-1","DOIUrl":"https://doi.org/10.1007/s10522-024-10101-1","url":null,"abstract":"<h3>Abstract</h3> <p>Aging entails the progressive decline in the body’s self-regulation and functionality over time. Notably, obesity and aging exhibit parallel phenotypes, with obesity further accelerating the aging process across multiple dimensions and diminishing lifespan. In this study, we explored the impact of <em>trans</em> fatty acid (TFA) consumption on the overall health and lifespan of male <em>Drosophila melanogaster</em> under an isocaloric high-sugar and high-fat diet. Our results indicate that TFA intake results in a shortened lifespan, elevated body weight, and increased triglyceride levels in flies fed a high-sugar and high-fat diet with equivalent caloric intake. Additionally, TFA exposure induces oxidative stress, locomotor deficits, and damage to the intestinal barrier in flies. Collectively, chronic TFA consumption expedites the aging process and reduces the lifespan of male <em>Drosophila melanogaster</em>. These results contribute supplementary evidence regarding the adverse health effects associated with TFAs.</p> <span> <h3>Graphical Abstract</h3> <p><em>Trans</em> fatty acid intake results in a shortened lifespan, elevated body weight, and increased triglyceride levels in male <em>Drosophila melanogaster</em> fed a high-sugar and high-fat diet with equivalent caloric intake. Additionally, <em>Trans</em> fatty acid exposure induces oxidative stress, locomotor deficits, and damage to the intestinal barrier in flies.</p> <p><span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/10522_2024_10101_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"1 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01Epub Date: 2023-11-21DOI: 10.1007/s10522-023-10076-5
Jasmine Harley, Munirah Mohamad Santosa, Chong Yi Ng, Oleg V Grinchuk, Jin-Hui Hor, Yajing Liang, Valerie Jingwen Lim, Wee Wei Tee, Derrick Sek Tong Ong, Shi-Yan Ng
{"title":"Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes.","authors":"Jasmine Harley, Munirah Mohamad Santosa, Chong Yi Ng, Oleg V Grinchuk, Jin-Hui Hor, Yajing Liang, Valerie Jingwen Lim, Wee Wei Tee, Derrick Sek Tong Ong, Shi-Yan Ng","doi":"10.1007/s10522-023-10076-5","DOIUrl":"10.1007/s10522-023-10076-5","url":null,"abstract":"<p><p>Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"341-360"},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138175505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01Epub Date: 2023-11-02DOI: 10.1007/s10522-023-10075-6
Alain Chebly, Charbel Khalil, Alexandra Kuzyk, Marie Beylot-Barry, Edith Chevret
{"title":"T-cell lymphocytes' aging clock: telomeres, telomerase and aging.","authors":"Alain Chebly, Charbel Khalil, Alexandra Kuzyk, Marie Beylot-Barry, Edith Chevret","doi":"10.1007/s10522-023-10075-6","DOIUrl":"10.1007/s10522-023-10075-6","url":null,"abstract":"<p><p>Aging is the decline of physiological capabilities required for life maintenance and reproduction over time. The human immune cells, including T-cells lymphocytes, undergo dramatic aging-related changes, including those related to telomeres and telomerase. It was demonstrated that telomeres and telomerase play crucial roles in T-cell differentiation, aging, and diseases, including a well-documented link between short telomeres and telomerase activation demonstrated in several T-cells malignancies. Herein, we provide a comprehensive review of the literature regarding T-cells' telomeres and telomerase in health and age related-diseases.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"279-288"},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01Epub Date: 2023-11-09DOI: 10.1007/s10522-023-10071-w
Isabel Córdova-Oriz, Alba M Polonio, Isabel Cuadrado-Torroglosa, Lucía Chico-Sordo, Marta Medrano, Juan A García-Velasco, Elisa Varela
{"title":"Chromosome ends and the theory of marginotomy: implications for reproduction.","authors":"Isabel Córdova-Oriz, Alba M Polonio, Isabel Cuadrado-Torroglosa, Lucía Chico-Sordo, Marta Medrano, Juan A García-Velasco, Elisa Varela","doi":"10.1007/s10522-023-10071-w","DOIUrl":"10.1007/s10522-023-10071-w","url":null,"abstract":"<p><p>Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the \"duration of life\" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"227-248"},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71520370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01DOI: 10.1007/s10522-024-10098-7
{"title":"Telomeres and aging: on and off the planet!","authors":"","doi":"10.1007/s10522-024-10098-7","DOIUrl":"https://doi.org/10.1007/s10522-024-10098-7","url":null,"abstract":"<h3>Abstract</h3> <p>Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective “caps” at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the “end-replication problem” first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"62 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01Epub Date: 2023-12-27DOI: 10.1007/s10522-023-10085-4
Madeline Eppard, João F Passos, Stella Victorelli
{"title":"Telomeres, cellular senescence, and aging: past and future.","authors":"Madeline Eppard, João F Passos, Stella Victorelli","doi":"10.1007/s10522-023-10085-4","DOIUrl":"10.1007/s10522-023-10085-4","url":null,"abstract":"<p><p>Over half a century has passed since Alexey Olovnikov's groundbreaking proposal of the end-replication problem in 1971, laying the foundation for our understanding of telomeres and their pivotal role in cellular senescence. This review paper delves into the intricate and multifaceted relationship between cellular senescence, the influence of telomeres in this process, and the far-reaching consequences of telomeres in the context of aging and age-related diseases. Additionally, the paper investigates the various factors that can influence telomere shortening beyond the confines of the end-replication problem and how telomeres can exert their impact on aging, even in the absence of significant shortening. Ultimately, this paper stands as a tribute to the pioneering work of Olovnikov, whose seminal contributions established the solid foundation upon which our ongoing explorations of telomeres and the aging process are based.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"329-339"},"PeriodicalIF":4.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01DOI: 10.1007/s10522-023-10090-7
Ivan A Olovnikov
{"title":"Telomeres in health and longevity: special issue in memory of Alexey Olovnikov.","authors":"Ivan A Olovnikov","doi":"10.1007/s10522-023-10090-7","DOIUrl":"10.1007/s10522-023-10090-7","url":null,"abstract":"<p><p>In this special issue we commemorate theoretical biologist Alexey Olovnikov (1936-2022), whose theory of marginotomy has laid the foundation for the new field of biology that studies the molecular structure of telomeres and its role in health, longevity and aging. This issue contains a collection of reviews and research articles that discuss different aspects of telomere and telomerase research, ranging from telomere length dynamics in wild animal populations to problems of telomere maintenance during human space flight.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"191-193"},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-04-01Epub Date: 2024-01-22DOI: 10.1007/s10522-023-10081-8
Pat Monaghan
{"title":"Linking telomere dynamics to evolution, life history and environmental change: perspectives, predictions and problems.","authors":"Pat Monaghan","doi":"10.1007/s10522-023-10081-8","DOIUrl":"10.1007/s10522-023-10081-8","url":null,"abstract":"<p><p>This perspectives paper considers the value of studying telomere biology outside of a biomedical context. I provide illustrative examples of the kinds of questions that evolutionary ecologists have addressed in studies of telomere dynamics in non-model species, primarily metazoan animals, and what this can contribute to our understanding of their evolution, life histories and health. I also discuss why the predicted relationships between telomere dynamics and life history traits, based on the detailed cellular studies in humans and model organisms, are not always found in studies in other species.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"301-311"},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Telomeres and telomerase: active but complex players in life-history decisions.","authors":"Radmila Čapková Frydrychová, Barbora Konopová, Vratislav Peska, Miloslav Brejcha, Michala Sábová","doi":"10.1007/s10522-023-10060-z","DOIUrl":"10.1007/s10522-023-10060-z","url":null,"abstract":"<p><p>Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"205-226"},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10049291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}