{"title":"Analyzing different aging theories in the context of the brain: DNA damage, inflammation, redox imbalance, and neurodevelopment intertwine.","authors":"Bruno César Feltes","doi":"10.1007/s10522-025-10243-w","DOIUrl":null,"url":null,"abstract":"<p><p>The neuronal tissue is notable for its unique regulation of the immune system, response to DNA damage, endurance against reactive oxygen and nitrogen species, and control of inflammatory pathways. Here, I discuss some uniqueness of the brain's aging process in light of the free radical theory of aging, DNA-damage accumulation, inflammaging, and aging as a consequence of a programmed developmental process. Key points include (i) the resilience of the neuronal tissue to oxidative stress; (ii) the neuron's efficiency in repairing learning-induced DNA damage, even with fewer repair pathways than other cell types; (iii) TLR9 and NFκB at the intersection of memory and inflammation; (iv) RELA linking the skin-brain axis during development, DNA damage response, and pro-inflammatory control; (v) PARP1 at the crossroad of all discussed aging theories. Data points to a \"burden threshold\" where the beneficial regulations of distinct pathways shift toward neurotoxic activities.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 3","pages":"105"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10243-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The neuronal tissue is notable for its unique regulation of the immune system, response to DNA damage, endurance against reactive oxygen and nitrogen species, and control of inflammatory pathways. Here, I discuss some uniqueness of the brain's aging process in light of the free radical theory of aging, DNA-damage accumulation, inflammaging, and aging as a consequence of a programmed developmental process. Key points include (i) the resilience of the neuronal tissue to oxidative stress; (ii) the neuron's efficiency in repairing learning-induced DNA damage, even with fewer repair pathways than other cell types; (iii) TLR9 and NFκB at the intersection of memory and inflammation; (iv) RELA linking the skin-brain axis during development, DNA damage response, and pro-inflammatory control; (v) PARP1 at the crossroad of all discussed aging theories. Data points to a "burden threshold" where the beneficial regulations of distinct pathways shift toward neurotoxic activities.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.