BiomimeticsPub Date : 2025-07-21DOI: 10.3390/biomimetics10070478
Quoc-Khai Tran, Young-Jae Ryoo
{"title":"Multi-Sensor Fusion Framework for Reliable Localization and Trajectory Tracking of Mobile Robot by Integrating UWB, Odometry, and AHRS.","authors":"Quoc-Khai Tran, Young-Jae Ryoo","doi":"10.3390/biomimetics10070478","DOIUrl":"https://doi.org/10.3390/biomimetics10070478","url":null,"abstract":"<p><p>This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion approach reduces the impact of noisy and inaccurate UWB measurements while correcting odometry drift. The system combines raw UWB distance measurements with wheel encoder readings and heading information from an AHRS to improve robustness and positioning accuracy. Experimental validation was conducted through repeated closed-loop trajectory trials. The results demonstrate that the proposed method significantly outperforms UWB-only localization, yielding reduced noise, enhanced consistency, and lower Dynamic Time Warping (DTW) distances across repetitions. The findings confirm the system's effectiveness and suitability for real-time mobile robot navigation in indoor environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-19DOI: 10.3390/biomimetics10070477
Sunny Narayan, Brahim Menacer, Muhammad Usman Kaisan, Joseph Samuel, Moaz Al-Lehaibi, Faisal O Mahroogi, Víctor Tuninetti
{"title":"Global Research Trends in Biomimetic Lattice Structures for Energy Absorption and Deformation: A Bibliometric Analysis (2020-2025).","authors":"Sunny Narayan, Brahim Menacer, Muhammad Usman Kaisan, Joseph Samuel, Moaz Al-Lehaibi, Faisal O Mahroogi, Víctor Tuninetti","doi":"10.3390/biomimetics10070477","DOIUrl":"https://doi.org/10.3390/biomimetics10070477","url":null,"abstract":"<p><p>Biomimetic lattice structures, inspired by natural architectures such as bone, coral, mollusk shells, and Euplectella aspergillum, have gained increasing attention for their exceptional strength-to-weight ratios, energy absorption, and deformation control. These properties make them ideal for advanced engineering applications in aerospace, biomedical devices, and structural impact protection. This study presents a comprehensive bibliometric analysis of global research on biomimetic lattice structures published between 2020 and 2025, aiming to identify thematic trends, collaboration patterns, and underexplored areas. A curated dataset of 3685 publications was extracted from databases like PubMed, Dimensions, Scopus, IEEE, Google Scholar, and Science Direct and merged together. After the removal of duplication and cleaning, about 2226 full research articles selected for the bibliometric analysis excluding review works, conference papers, book chapters, and notes using Cite space, VOS viewer version 1.6.20, and Bibliometrix R packages (4.5. 64-bit) for mapping co-authorship networks, institutional affiliations, keyword co-occurrence, and citation relationships. A significant increase in the number of publications was found over the past year, reflecting growing interest in this area. The results identify China as the most prolific contributor, with substantial institutional support and active collaboration networks, especially with European research groups. Key research focuses include additive manufacturing, finite element modeling, machine learning-based design optimization, and the performance evaluation of bioinspired geometries. Notably, the integration of artificial intelligence into structural modeling is accelerating a shift toward data-driven design frameworks. However, gaps remain in geometric modeling standardization, fatigue behavior analysis, and the real-world validation of lattice structures under complex loading conditions. This study provides a strategic overview of current research directions and offers guidance for future interdisciplinary exploration. The insights are intended to support researchers and practitioners in advancing next-generation biomimetic materials with superior mechanical performance and application-specific adaptability.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots.","authors":"Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng, Yingna Li","doi":"10.3390/biomimetics10070476","DOIUrl":"https://doi.org/10.3390/biomimetics10070476","url":null,"abstract":"<p><p>As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm's multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Ovariectomy and Low-Calcium Diet on Six Different Sites of the Rat Skeleton.","authors":"Xanthippi Dereka, Rodopi Emfietzoglou, Pavlos Lelovas","doi":"10.3390/biomimetics10070474","DOIUrl":"https://doi.org/10.3390/biomimetics10070474","url":null,"abstract":"<p><p>The aim of this study was to evaluate structural and micro-architectural changes in the mandible, parietal bone, femur, and tibia in OVX rats at different time periods after ovariectomy. Forty-two 11-month-old female Wistar rats were used. Six rats without surgery were euthanized to serve as a baseline. Eighteen rats were ovariectomized and fed with a calcium-deficient diet, and eighteen animals were used as controls (Ctrls) and fed with a standard diet. Six OVX rats and six Ctrls were euthanized at 3, 6, and 9 months. Qualitative histology and dual-energy X-ray absorptiometry (DXA) were performed. Histological evaluation of bones harvested from the OVX groups revealed trabecular bone reduction, while no significant differences in the cortical bone of OVX and Ctrls were observed. DXA measurements of (1) femoral diaphysis showed a significant decrease in the OVX group compared to the Ctrl groups at 3 (<i>p</i> = 0.041), 6 (<i>p</i> < 0.001), and 9 months (<i>p</i> < 0.001); (2) the proximal tibia showed a significant decrease in the OVX group compared to the Ctrl groups (<i>p</i> < 0.001); (3) parietal bone showed a significant difference between OVX and Ctrls at 6 months (<i>p</i> = 0.012); and (4) the mandible showed no significant differences between the OVX and Ctrl groups. OVX aged rats might present reductions in the density of the femoral diaphysis, proximal tibia, parietal bone, and mandible at different time points. These findings contribute to the field of biomimetics by providing more details for the understanding of age- and hormone-related bone changes in the osteoporotic-like rat model. Such data are critical for the development of biomimetic materials and structures that attempt to simulate natural bone adaptation and deterioration, especially in the context of postmenopausal or osteoporotic conditions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-18DOI: 10.3390/biomimetics10070472
Ziqi Liu, Bo Jin, Junkui Dong, Qingyun Yao, Yinglian Jin, Tao Liu, Binrui Wang
{"title":"Sliding Mode Repetitive Control Based on the Unknown Dynamics Estimator of a Two-Stage Supply Pressure Hydraulic Hexapod Robot.","authors":"Ziqi Liu, Bo Jin, Junkui Dong, Qingyun Yao, Yinglian Jin, Tao Liu, Binrui Wang","doi":"10.3390/biomimetics10070472","DOIUrl":"https://doi.org/10.3390/biomimetics10070472","url":null,"abstract":"<p><p>Hydraulic actuated legged robots display bright prospects and significant research value in areas such as unmanned area surveying, disaster rescue, military fields, and other scenarios owing to their excellent bionic characteristics, particularly their heavy payload capabilities and high power density. To realize the all-terrain adaptation locomotion of the hydraulic hexapod robot (HHR) with a heavy payload, one alternative control framework is position-posture control based on joint position control. As the foundation for the steady locomotion of HHRs, it is imperative to realize high-precision joint position control to improve the robustness under external disturbances during the walking process and to complete the attitude control task. To address the above issues, this paper proposes a sliding mode repetitive control based on the unknown dynamics estimator (SMRC + UDE) for the knee and hip joints of the HHR with a two-stage supply pressure hydraulic system (TSS). The effectiveness of the SMRC + UDE method is verified using a simulation environment and the ZJUHEX01 prototype experimental platform, and it is compared with the results for PID and adaptive robust sliding mode control (ARSMC). The results show that SMRC + UDE may be more suitable for our HHR, considering both the control performance and efficiency factors.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-18DOI: 10.3390/biomimetics10070473
Jin-Long Shen, Ho-Chun Yang, Szu-I Yeh
{"title":"Fish Scale-Inspired Flow Control for Corner Vortex Suppression in Compressor Cascades.","authors":"Jin-Long Shen, Ho-Chun Yang, Szu-I Yeh","doi":"10.3390/biomimetics10070473","DOIUrl":"https://doi.org/10.3390/biomimetics10070473","url":null,"abstract":"<p><p>Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like surface structure was applied to the suction side of a cascade blade to reduce viscous drag and modulate secondary flow behavior. Wind tunnel experiments and numerical simulations were conducted to evaluate its aerodynamic effects. The results show that the fish scale-inspired configuration induced climbing vortices that energized low-momentum fluid near the end wall, effectively suppressing both passage and corner vortices. This led to a reduction in spanwise flow penetration and a decrease in total pressure loss of up to 5.69%. The enhanced control of secondary flows also contributed to improved flow uniformity in the end-wall region. These findings highlight the potential of biologically inspired surface designs for corner vortex suppression and aerodynamic efficiency improvement in turbomachinery systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-18DOI: 10.3390/biomimetics10070475
Mansoureh Rezapourian, Ali Cheloee Darabi, Mohammadreza Khoshbin, Irina Hussainova
{"title":"Multi-Objective Machine Learning Optimization of Cylindrical TPMS Lattices for Bone Implants.","authors":"Mansoureh Rezapourian, Ali Cheloee Darabi, Mohammadreza Khoshbin, Irina Hussainova","doi":"10.3390/biomimetics10070475","DOIUrl":"https://doi.org/10.3390/biomimetics10070475","url":null,"abstract":"<p><p>This study presents a multi-objective optimization framework for designing cylindrical triply periodic minimal surface (TPMS) lattices tailored for bone implant applications. Using an artificial neural network (ANN) as a surrogate model trained on simulated data, four key properties-ultimate stress (U), energy absorption (EA), surface area-to-volume ratio (SA/VR), and relative density (RD)-were predicted from seven lattice design parameters. To address anatomical variability, a novel implant size-based categorization (small, medium, and large) was introduced, and separate optimization runs were conducted for each group. The optimization was performed via the NSGA-II algorithm to maximize mechanical performance (U and EA) and surface efficiency (SA/VR), while filtering for biologically relevant RD values (20-40%). Separate optimization runs were conducted for small, medium, and large implant size groups. A total of 105 Pareto-optimal designs were identified, with 75 designs retained after RD filtering. SHapley Additive exPlanations (SHAP) analysis revealed the dominant influence of thickness and unit cell size on target properties. Kernel density and boxplot comparisons confirmed distinct performance trends across size groups. The framework effectively balances competing design goals and enables the selection of size-specific lattices. The proposed approach provides a reproducible pathway for optimizing bioarchitectures, with the potential to accelerate the development of lattice-based implants in personalized medicine.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-17DOI: 10.3390/biomimetics10070470
Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han, Pan Cao
{"title":"Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review.","authors":"Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han, Pan Cao","doi":"10.3390/biomimetics10070470","DOIUrl":"https://doi.org/10.3390/biomimetics10070470","url":null,"abstract":"<p><p>As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas-liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-17DOI: 10.3390/biomimetics10070471
Heming Jia, Mahmoud Abdel-Salam, Gang Hu
{"title":"ACIVY: An Enhanced IVY Optimization Algorithm with Adaptive Cross Strategies for Complex Engineering Design and UAV Navigation.","authors":"Heming Jia, Mahmoud Abdel-Salam, Gang Hu","doi":"10.3390/biomimetics10070471","DOIUrl":"https://doi.org/10.3390/biomimetics10070471","url":null,"abstract":"<p><p>The Adaptive Cross Ivy (ACIVY) algorithm is a novel bio-inspired metaheuristic that emulates ivy plant growth behaviors for complex optimization problems. While the original Ivy Optimization Algorithm (IVYA) demonstrates a competitive performance, it suffers from limited inter-individual information exchange, inadequate directional guidance for local optima escape, and abrupt exploration-exploitation transitions. To address these limitations, ACIVY integrates three strategic enhancements: the crisscross strategy, enabling horizontal and vertical crossover operations for improved population diversity; the LightTrack strategy, incorporating positional memory and repulsion mechanisms for effective local optima escape; and the Top-Guided Adaptive Mutation strategy, implementing ranking-based mutation with dynamic selection pools for smooth exploration-exploitation balance. Comprehensive evaluations on the CEC2017 and CEC2022 benchmark suites demonstrate ACIVY's superior performance against state-of-the-art algorithms across unimodal, multimodal, hybrid, and composite functions. ACIVY achieved outstanding average rankings of 1.25 (CEC2022) and 1.41 (CEC2017 50D), with statistical significance confirmed through Wilcoxon tests. Practical applications in engineering design optimization and UAV path planning further validate ACIVY's robust performance, consistently delivering optimal solutions across diverse real-world scenarios. The algorithm's exceptional convergence precision, solution reliability, and computational efficiency establish it as a powerful tool for challenging optimization problems requiring both accuracy and consistency.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-07-17DOI: 10.3390/biomimetics10070469
Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi
{"title":"Robust Visuomotor Control for Humanoid Loco-Manipulation Using Hybrid Reinforcement Learning.","authors":"Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi","doi":"10.3390/biomimetics10070469","DOIUrl":"https://doi.org/10.3390/biomimetics10070469","url":null,"abstract":"<p><p>Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot's tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}