{"title":"Bio-Inspired 3D Affordance Understanding from Single Image with Neural Radiance Field for Enhanced Embodied Intelligence.","authors":"Zirui Guo, Xieyuanli Chen, Zhiqiang Zheng, Huimin Lu, Ruibin Guo","doi":"10.3390/biomimetics10060410","DOIUrl":"10.3390/biomimetics10060410","url":null,"abstract":"<p><p>Affordance understanding means identifying possible operable parts of objects, which is crucial in achieving accurate robotic manipulation. Although homogeneous objects for grasping have various shapes, they always share a similar affordance distribution. Based on this fact, we propose AFF-NeRF to address the problem of affordance generation for homogeneous objects inspired by human cognitive processes. Our method employs deep residual networks to extract the shape and appearance features of various objects, enabling it to adapt to various homogeneous objects. These features are then integrated into our extended neural radiance fields, named AFF-NeRF, to generate 3D affordance models for unseen objects using a single image. Our experimental results demonstrate that our approach outperforms baseline methods in the affordance generation of unseen views on novel objects without additional training. Additionally, more stable grasps can be obtained by employing 3D affordance models generated by our method in the grasp generation algorithm.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-19DOI: 10.3390/biomimetics10060411
Harun Gezici
{"title":"A Novel Exploration Stage Approach to Improve Crayfish Optimization Algorithm: Solution to Real-World Engineering Design Problems.","authors":"Harun Gezici","doi":"10.3390/biomimetics10060411","DOIUrl":"10.3390/biomimetics10060411","url":null,"abstract":"<p><p>The Crayfish Optimization Algorithm (COA) has limitations that affect its optimization performance seriously. The competition stage of the COA uses a simplified mathematical model that concentrates on relations of distance between crayfish only. It is deprived of a stochastic variable and is not able to generate an applicable balance between exploration and exploitation. Such a case causes the COA to have early convergence, to perform poorly in high-dimensional problems, and to be trapped by local minima. Moreover, the low activation probability of the summer resort stage decreases the exploration ability more and slows down the speed of convergence. In order to compensate these shortcomings, this study proposes an Improved Crayfish Optimization Algorithm (ICOA) that designs the competition stage with three modifications: (1) adaptive step length mechanism inversely proportional to the number of iterations, which enables exploration in early iterations and exploitation in later stages, (2) vector mapping that increases stochastic behavior and improves efficiency in high-dimensional spaces, (3) removing the X<sub>shade</sub> parameter in order to abstain from early convergence. The proposed ICOA is compared to 12 recent meta-heuristic algorithms by using the CEC-2014 benchmark set (30 functions, 10 and 30 dimensions), five engineering design problems, and a real-world ROAS optimization case. Wilcoxon Signed-Rank Test, <i>t</i>-test, and Friedman rank indicate the high performance of the ICOA as it solves 24 of the 30 benchmark functions successfully. In engineering applications, the ICOA achieved an optimal weight (1.339965 kg) in cantilever beam design, a maximum load capacity (85,547.81 N) in rolling element bearing design, and the highest performance (144.601) in ROAS optimization. The superior performance of the ICOA compared to the COA is proven by the following quantitative data: 0.0007% weight reduction in cantilevers design (from 1.339974 kg to 1.339965 kg), 0.09% load capacity increase in bearing design (COA: 84,196.96 N, ICOA: 85,498.38 N average), 0.27% performance improvement in ROAS problem (COA: 144.072, ICOA: 144.601), and most importantly, there seems to be an overall performance improvement as the COA has a 4.13 average rank while the ICOA has 1.70 on CEC-2014 benchmark tests. Results indicate that the improved COA enhances exploration and successfully solves challenging problems, demonstrating its effectiveness in various optimization scenarios.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-18DOI: 10.3390/biomimetics10060409
Marina Angélica Marciano, Paulo Jorge Palma, Ana Cristina Padilha Janini, Brenda Fornazaro Moraes, Thiago Bessa Marconato Antunes, Ribamar Lazanha Lucateli, Bruno Martini Guimarães, Mariza Akemi Matsumoto, Diana Bela Sequeira, Talita Tartari, Brenda Paula Figueiredo Almeida Gomes, Marco Antonio Hungaro Duarte
{"title":"Chemical and Biological Properties of C-Point Obturation Cones.","authors":"Marina Angélica Marciano, Paulo Jorge Palma, Ana Cristina Padilha Janini, Brenda Fornazaro Moraes, Thiago Bessa Marconato Antunes, Ribamar Lazanha Lucateli, Bruno Martini Guimarães, Mariza Akemi Matsumoto, Diana Bela Sequeira, Talita Tartari, Brenda Paula Figueiredo Almeida Gomes, Marco Antonio Hungaro Duarte","doi":"10.3390/biomimetics10060409","DOIUrl":"10.3390/biomimetics10060409","url":null,"abstract":"<p><p>This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously in the dorsal connective tissue of sixteen albino rats (n = 8 per group). Histological evaluation of inflammatory infiltrate intensity was performed at 30 and 60 days post-implantation, with statistical analysis (significance set at <i>p</i> < 0.05). SEM-EDS analysis revealed distinct elemental compositions: C-Point primarily contained zirconium and cobalt ions, while gutta-percha cones demonstrated a strong zinc signature with trace amounts of barium, aluminum, and sulfur. Both materials exhibited similar particulate morphology with radiopaque inclusions. Histologically, no significant difference in inflammatory response was observed between C-Point and gutta-percha at any time point (<i>p</i> > 0.05). All specimens developed a fibrous encapsulation. The inflammatory profile showed temporal dynamics, with lymphocyte predominance during early stages that progressively diminished by the study endpoint. These findings demonstrate that while C-Point possesses a unique elemental profile dominated by zirconium, its tissue biocompatibility parallels that of conventional gutta-percha obturation materials. However, due to the absence of mechanical testing and the limited in vivo follow-up period, the long-term stability of the material remains uncertain.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-17DOI: 10.3390/biomimetics10060408
Tim T Bui, Alexander T Yahanda, Karan Joseph, Miguel Ruiz-Cardozo, Bernardo A de Monaco, Alexander Perdomo-Pantoja, Joshua P Koleske, Sean D McEvoy, Camilo A Molina
{"title":"Using Patient-Specific 3D-Printed C1-C2 Interfacet Spacers for the Treatment of Type 1 Basilar Invagination: A Clinical Case Report.","authors":"Tim T Bui, Alexander T Yahanda, Karan Joseph, Miguel Ruiz-Cardozo, Bernardo A de Monaco, Alexander Perdomo-Pantoja, Joshua P Koleske, Sean D McEvoy, Camilo A Molina","doi":"10.3390/biomimetics10060408","DOIUrl":"10.3390/biomimetics10060408","url":null,"abstract":"<p><p><b>Background:</b> Type 1 basilar invagination (BI) is caused by a structural instability at the craniovertebral junction (CVJ) and has been historically treated with distraction and stabilization through fusion of the C1-C2 vertebrae. Recent advances in 3D printed custom implants (3DPIs) have improved the array of available options for reaching distraction and alignment goals. <b>Case Presentation:</b> We report the case of a 15-year-old male who presented with early signs of cervical myelopathy. Radiographic evaluation revealed type 1 BI with a widened atlantodental interval (ADI) of 3.7 mm and a 9 mm McRae's line violation (MLV) of the dens, resulting in severe narrowing at the CVJ and brainstem/spinal cord impingement. Of note, the patient had bilateral dysplastic C1 and C2 anatomy, thus requiring a patient-specific 3DPI to conform to this anatomy and enable sufficient distraction and fusion. Custom 3D printed C1-C2 interfacet spacers were created and implemented within 14 days to achieve sufficient distraction, osteoconduction, and stabilization of the C1-C2 joint. <b>Outcome:</b> Postoperatively, the patient remained neurologically intact with myelopathic symptom improvement before discharge on postoperative day 4. Postoperative imaging demonstrated the resolution of BI from successful C1-C2 joint distraction and confirmed intended implant placement with resolution of canal stenosis. During his 6-week follow-up, the patient remained neurologically stable with intact hardware and preserved alignment. <b>Conclusions:</b> This case is the first in the United States demonstrating the use of custom 3D printed interfacet spacers to achieve successful distraction, decompression, and stabilization of type 1 BI. These patient-specific 3DPIs were designed and created in a streamlined manner and serve as proof-of-concept of pragmatic implant design and manufacturing. Future optimization of the workflow and characterization of long-term patient outcomes should be explored for these types of 3DPI.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-16DOI: 10.3390/biomimetics10060407
Hyeonju Ha, Sudeok Shon, Seungjae Lee
{"title":"Domain-Separated Quantum Neural Network for Truss Structural Analysis with Mechanics-Informed Constraints.","authors":"Hyeonju Ha, Sudeok Shon, Seungjae Lee","doi":"10.3390/biomimetics10060407","DOIUrl":"10.3390/biomimetics10060407","url":null,"abstract":"<p><p>This study proposes an index-based quantum neural network (QNN) model, built upon a variational quantum circuit (VQC), as a surrogate framework for the static analysis of truss structures. Unlike coordinate-based models, the proposed QNN uses discrete member and node indices as inputs, and it adopts a separate-domain strategy that partitions the structure for parallel training. This architecture reflects the way nature organizes and optimizes complex systems, thereby enhancing both flexibility and scalability. Independent quantum circuits are assigned to each separate domain, and a mechanics-informed loss function based on the force method is formulated within a Lagrangian dual framework to embed physical constraints directly into the training process. As a result, the model achieves high prediction accuracy and fast convergence, even under complex structural conditions with relatively few parameters. Numerical experiments on 2D and 3D truss structures show that the QNN reduces the number of parameters by up to 64% compared to conventional neural networks, while achieving higher accuracy. Even within the same QNN architecture, the separate-domain approach outperforms the single-domain model with a 6.25% reduction in parameters. The proposed index-based QNN model has demonstrated practical applicability for structural analysis and shows strong potential as a quantum-based numerical analysis tool for future applications in building structure optimization and broader engineering domains.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-16DOI: 10.3390/biomimetics10060406
Martin Möller, Olga Speck, Harishankar Thekkepat, Thomas Speck
{"title":"Transition Processes in Technological Systems: Inspiration from Processes in Biological Evolution.","authors":"Martin Möller, Olga Speck, Harishankar Thekkepat, Thomas Speck","doi":"10.3390/biomimetics10060406","DOIUrl":"10.3390/biomimetics10060406","url":null,"abstract":"<p><p>With environmental challenges intensifying, a fundamental understanding and sustainable management of ongoing transition processes are crucial. Biological evolution provides valuable lessons on how to adapt and thrive under changing conditions. By studying its key principles, we identified analogies between biological evolution and technological transitions in terms of both the Multi-Level Perceptive and the path dependency model. The comparative study also revealed that, despite contrasting time scales, the generation-based and version-based developments are comparable. In addition, interesting similarities were found in the increase and decrease of variety and between fitness and consistency. The lessons learned from biology include \"Give it a try\", \"Do not close for reconstruction\", and \"Keep older versions in the innovation process\". Based on this comparison, we aim to gain insights for a better understanding of how to manage technology transitions and to derive concrete indicators for assessing and monitoring them. In doing so, we can provide action-oriented guidance for developing more sustainable technological solutions for major ongoing transitions, such as the energy transition.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Analysis of Load Reduction in the Gliding Process Achieved by the Bionic Swan's Webbed-Foot Structures.","authors":"Fukui Gao, Xiyan Liu, Xinlin Li, Zhaolin Fan, Houcun Zhou, Wenhua Wu","doi":"10.3390/biomimetics10060405","DOIUrl":"10.3390/biomimetics10060405","url":null,"abstract":"<p><p>Webbed-foot gliding water entry is a characteristic water-landing strategy employed by swans and other large waterfowls, demonstrating exceptional low-impact loading and remarkable motion stability. These distinctive biomechanical features offer significant potential for informing the design of cross-medium vehicles' (CMVs') water-entry systems. To analyze the hydrodynamic mechanisms and flow characteristics during swan webbed-foot gliding entry, the three-dimensional bionic webbed-foot water-entry process was investigated through a computational fluid dynamics (CFD) method coupled with global motion mesh (GMM) technology, with a particular emphasis on elucidating the regulatory effects of entry parameters on dynamic performance. The results demonstrated that the gliding water-entry process can be divided into two distinct phases: stable skipping and surface gliding. During the stable skipping phase, the motion trajectory exhibits quasi-sinusoidal periodic fluctuations, accompanied by multiple water-impact events and significant load variations. In the surface-gliding phase, the kinetic energy of the bionic webbed foot progressively decreases while maintaining relatively stable load characteristics. Increasing the water-entry velocity will enhance impact loads while simultaneously increasing the skipping frequency and distance. Increasing the water-entry angle will primarily intensify the impact load magnitude while slightly reducing the skipping frequency and distance. An optimal pitch angle of 20° provides maximum glide-skip stability for the bio-inspired webbed foot, with angles exceeding 25° or below 15° leading to motion instability. This study on webbed-foot gliding entry behavior provided insights for developing novel bio-inspired entry strategies for cross-medium vehicles, while simultaneously advancing the optimization of impact-mitigation designs in gliding water-entry systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-16DOI: 10.3390/biomimetics10060404
Chaoming Huang, Jinhe Qi, Jie Li, Xinchi Li, Jiawei Chen, Shuo Fu, Yanning Lu
{"title":"Fabrication of EP@PDMS@F-SiO<sub>2</sub> Superhydrophobic Composite Coating on Titanium Alloy Substrate.","authors":"Chaoming Huang, Jinhe Qi, Jie Li, Xinchi Li, Jiawei Chen, Shuo Fu, Yanning Lu","doi":"10.3390/biomimetics10060404","DOIUrl":"10.3390/biomimetics10060404","url":null,"abstract":"<p><p>In this study, a preparation method of superhydrophobic composite coating based on a titanium alloy (Ti-6Al-4V) substrate is proposed. The micro-scale pit array structure was fabricated via laser etching technology. Utilizing the synergistic effects of epoxy resin (EP), polydimethylsiloxane (PDMS), and fluorinated nanosilica (F-SiO<sub>2</sub>), we successfully prepared an EP@PDMS@F-SiO<sub>2</sub> composite coating. The effects of the contents of EP, PDMS, and F-SiO<sub>2</sub> on the surface wettability, mechanical stability, and UV durability were studied by optimizing the coating ratio through orthogonal experiments. The results show that the micro-nano composite structure formed by laser etching can effectively fix the coating particles and provide excellent superhydrophobicity on the surface. The coating retains high hydrophobicity after paper abrasion (1000 cm under a 200 g load), demonstrating the mechanical stability of the armor-like structure, High-content F-SiO<sub>2</sub> coatings exhibit greater UV durability. In addition, the coating surface has low droplet adhesion and self-cleaning capabilities for efficient contaminant removal. The research provides theoretical and technical support for the design and engineering application of a non-fluorinated, environmentally friendly superhydrophobic coating.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-14DOI: 10.3390/biomimetics10060403
Jinbo She, Xiang Feng, Bao Xu, Linyang Chen, Yuan Wang, Ning Liu, Wenpeng Zou, Guoliang Ma, Bin Yu, Kaixian Ba
{"title":"Bionic Energy-Efficient Inverse Kinematics Method Based on Neural Networks for the Legs of Hydraulic Legged Robots.","authors":"Jinbo She, Xiang Feng, Bao Xu, Linyang Chen, Yuan Wang, Ning Liu, Wenpeng Zou, Guoliang Ma, Bin Yu, Kaixian Ba","doi":"10.3390/biomimetics10060403","DOIUrl":"10.3390/biomimetics10060403","url":null,"abstract":"<p><p>Hydraulic legged robots, with advantages such as high load capacity and power density, have become a strategic driving force in advancing intelligent mobile platform technologies. However, their high energy consumption significantly limits long-duration endurance and efficient operational performance. In this paper, inspired by the excellent autonomous energy-efficient consciousness of mammals endowed by natural evolution, a bionic energy-efficient inverse kinematics method based on neural networks (EIKNN) is proposed for the energy-efficient motion planning of hydraulic legged robots with redundant degrees of freedom (RDOFs). Firstly, the dynamic programming (DP) algorithm is used to solve the optimal joint configuration with minimum energy loss as the goal, and the training data set is generated. Subsequently, the inverse kinematic model of the leg with minimum energy loss is learned based on neural network (NN) simulation of the autonomous energy-efficient consciousness endowed to mammals by natural evolution. Finally, extensive comparative experiments validate the effectiveness and superiority of the proposed method. This method not only significantly reduces energy dissipation in hydraulic legged robots but also lays a crucial foundation for advancing hydraulic legged robot technology toward high efficiency, environmental sustainability, and long-term developmental viability.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomimeticsPub Date : 2025-06-13DOI: 10.3390/biomimetics10060399
Wei Xia, Zhiwei Liao, Zongxin Lu, Ligang Yao
{"title":"Bio-Signal-Guided Robot Adaptive Stiffness Learning via Human-Teleoperated Demonstrations.","authors":"Wei Xia, Zhiwei Liao, Zongxin Lu, Ligang Yao","doi":"10.3390/biomimetics10060399","DOIUrl":"10.3390/biomimetics10060399","url":null,"abstract":"<p><p>Robot learning from human demonstration pioneers an effective mapping paradigm for endowing robots with human-like operational capabilities. This paper proposes a bio-signal-guided robot adaptive stiffness learning framework grounded in the conclusion that muscle activation of the human arm is positively correlated with the endpoint stiffness. First, we propose a human-teleoperated demonstration platform enabling real-time modulation of robot end-effector stiffness by human tutors during operational tasks. Second, we develop a dual-stage probabilistic modeling architecture employing the Gaussian mixture model and Gaussian mixture regression to model the temporal-motion correlation and the motion-sEMG relationship, successively. Third, a real-world experiment was conducted to validate the effectiveness of the proposed skill transfer framework, demonstrating that the robot achieves online adaptation of Cartesian impedance characteristics in contact-rich tasks. This paper provides a simple and intuitive way to plan the Cartesian impedance parameters, transcending the classical method that requires complex human arm endpoint stiffness identification before human demonstration or compensation for the difference in human-robot operational effects after human demonstration.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}