Jonas Brandstetter, Eva-Maria Knoch, Frank Gauterin
{"title":"Heart Rate Estimation Using FMCW Radar: A Two-Stage Method Evaluated for In-Vehicle Applications.","authors":"Jonas Brandstetter, Eva-Maria Knoch, Frank Gauterin","doi":"10.3390/biomimetics10090630","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the driver's state in real time is a critical challenge in modern vehicle safety systems, as human factors account for the vast majority of traffic accidents. Heart rate (HR) is a key physiological indicator of the driver's condition, yet contactless measurements in dynamic in-vehicle environments remain difficult due to motion artifacts, vibrations, and varying operational conditions. This paper presents a novel two-stage method for HR estimation using a commercial 60 GHz frequency-modulated continuous wave (FMCW) radar sensor, specifically designed and validated for in-vehicle applications. In the first stage, coarse HR estimation is performed using the discrete wavelet transform (DWT) and autoregressive (AR) spectral analysis. The second stage refines the estimate using an inverse application of the relevance vector machine (RVM) approach, leveraging a narrowed frequency window derived from Stage 1. Final HR estimates are stabilized through sequential Kalman filtering (SKF) across time segments. The system was implemented using an Infineon BGT60TR13C radar module installed in the sun visor of a passenger vehicle. Extensive data collection was conducted during real-world driving across diverse traffic scenarios. The results demonstrate robust HR estimations with an accuracy comparable to that of commercial wearable devices, validated against a Polar H10 chest strap. This method offers several advantages over prior work, including short measurement windows (5 s), operation under varying lighting and clothing conditions, and validation in realistic driving environments. In this sense, the method contributes to the field of biomimetics by transferring the biological principles of continuous vital sign perception to technical sensorics in the automotive domain. Future work will explore the fusion of sensors with visual methods and potential extension to heart rate variability (HRV) estimations to enhance driver monitoring systems (DMSs) further.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090630","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the driver's state in real time is a critical challenge in modern vehicle safety systems, as human factors account for the vast majority of traffic accidents. Heart rate (HR) is a key physiological indicator of the driver's condition, yet contactless measurements in dynamic in-vehicle environments remain difficult due to motion artifacts, vibrations, and varying operational conditions. This paper presents a novel two-stage method for HR estimation using a commercial 60 GHz frequency-modulated continuous wave (FMCW) radar sensor, specifically designed and validated for in-vehicle applications. In the first stage, coarse HR estimation is performed using the discrete wavelet transform (DWT) and autoregressive (AR) spectral analysis. The second stage refines the estimate using an inverse application of the relevance vector machine (RVM) approach, leveraging a narrowed frequency window derived from Stage 1. Final HR estimates are stabilized through sequential Kalman filtering (SKF) across time segments. The system was implemented using an Infineon BGT60TR13C radar module installed in the sun visor of a passenger vehicle. Extensive data collection was conducted during real-world driving across diverse traffic scenarios. The results demonstrate robust HR estimations with an accuracy comparable to that of commercial wearable devices, validated against a Polar H10 chest strap. This method offers several advantages over prior work, including short measurement windows (5 s), operation under varying lighting and clothing conditions, and validation in realistic driving environments. In this sense, the method contributes to the field of biomimetics by transferring the biological principles of continuous vital sign perception to technical sensorics in the automotive domain. Future work will explore the fusion of sensors with visual methods and potential extension to heart rate variability (HRV) estimations to enhance driver monitoring systems (DMSs) further.