Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xu Wang, Jingfu Shan
{"title":"Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization.","authors":"Xu Wang, Jingfu Shan","doi":"10.3390/biomimetics10090633","DOIUrl":null,"url":null,"abstract":"<p><p>Developing solutions for complex optimization problems is fundamental to progress in many scientific and engineering disciplines. The Flower Fertilization Optimization (FFO) algorithm, a powerful metaheuristic inspired by the reproductive processes of flowering plants, is one such method. Nevertheless, FFO's effectiveness can be hampered by a decline in population diversity during the search process, which increases the risk of the algorithm stagnating in local optima. To address this shortcoming, this work proposes an improved method called Crisscross Flower Fertilization Optimization (CCFFO). It enhances the FFO framework by incorporating a crisscross (CC) operator, a mechanism that facilitates a structured exchange of information between different solutions. By doing so, CCFFO effectively boosts population diversity and improves its capacity to avoid local optima. Rigorous testing on the challenging CEC2017 benchmark suite confirms CCFFO's superiority; it achieved the top overall rank when compared against ten state-of-the-art algorithms. Furthermore, its practical effectiveness is demonstrated on a complex reservoir production optimization problem, where CCFFO secured a higher Net Present Value (NPV) than its competitors. These results highlight CCFFO's potential as a powerful and versatile tool for solving complex, real-world optimization tasks.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090633","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing solutions for complex optimization problems is fundamental to progress in many scientific and engineering disciplines. The Flower Fertilization Optimization (FFO) algorithm, a powerful metaheuristic inspired by the reproductive processes of flowering plants, is one such method. Nevertheless, FFO's effectiveness can be hampered by a decline in population diversity during the search process, which increases the risk of the algorithm stagnating in local optima. To address this shortcoming, this work proposes an improved method called Crisscross Flower Fertilization Optimization (CCFFO). It enhances the FFO framework by incorporating a crisscross (CC) operator, a mechanism that facilitates a structured exchange of information between different solutions. By doing so, CCFFO effectively boosts population diversity and improves its capacity to avoid local optima. Rigorous testing on the challenging CEC2017 benchmark suite confirms CCFFO's superiority; it achieved the top overall rank when compared against ten state-of-the-art algorithms. Furthermore, its practical effectiveness is demonstrated on a complex reservoir production optimization problem, where CCFFO secured a higher Net Present Value (NPV) than its competitors. These results highlight CCFFO's potential as a powerful and versatile tool for solving complex, real-world optimization tasks.

Abstract Image

Abstract Image

Abstract Image

交叉花施肥优化(CCFFO):一种基于生物启发的全局和油藏产量优化元启发式算法。
开发复杂优化问题的解决方案是许多科学和工程学科进步的基础。花卉受精优化算法(Flower Fertilization Optimization, FFO)就是这样一种方法,它是一种受开花植物繁殖过程启发的强大的元启发式算法。然而,在搜索过程中,种群多样性的下降会阻碍FFO的有效性,这增加了算法停滞在局部最优的风险。为了解决这一问题,本文提出了一种改进的交叉花施肥优化方法(CCFFO)。它通过加入一个交叉(CC)操作符来增强FFO框架,这是一种促进不同解决方案之间结构化信息交换的机制。通过这样做,CCFFO有效地提高了种群多样性,提高了避免局部最优的能力。在具有挑战性的CEC2017基准套件上进行的严格测试证实了CCFFO的优势;与10个最先进的算法相比,它获得了最高的综合排名。此外,在复杂的油藏生产优化问题上,CCFFO的实际有效性得到了验证,在该问题上,CCFFO比竞争对手获得了更高的净现值(NPV)。这些结果突出了CCFFO作为解决复杂的现实优化任务的强大而通用的工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信