{"title":"Effect of Surface Morphology and Texture of Short-Tailed Shrew's Toe on Tribological Properties of 65Mn Steel.","authors":"Yachao Zhang, Jian Zhang, Wengang Chen, Haijun Wang, Zhaoling Qiu, Wen Wang, Yali Zhang, Dongyang Li","doi":"10.3390/biomimetics10090631","DOIUrl":null,"url":null,"abstract":"<p><p>To reduce the friction coefficient and wear in tillage machinery during operation, biomimetic textures with different densities inspired by the short-tailed shrew's claw were designed using biomimetic principles. These textures were applied to the surface of 65Mn steel using laser processing technology. This study investigated the effects of these bionic textures on the tribological properties of 65Mn steel surfaces in two environments: dry friction and soil friction. Friction and wear tests were conducted, and the friction coefficient, wear morphology, and wear quality were measured using a friction and wear testing machine, a scanning electron microscope (SEM), and a three-dimensional profilometer. The results indicate that under dry friction conditions, the tribological properties of specimens with bionic textures were significantly improved compared to non-textured specimens. The frictional properties of the specimens with bionic textures were optimized at a texture density of 20%, with an average coefficient of friction reduction of 24%. Under soil friction conditions, the samples with bionic textures demonstrated better tribological performance at densities of 20% and 30% compared to the non-textured samples, with decreases in the average coefficient of friction of 1.3% and 2.9%. The special surface structure of the bionic short-tailed shrew claw can effectively reduce friction heat effects and wear, demonstrating significant anti-friction and anti-wear performance.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090631","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the friction coefficient and wear in tillage machinery during operation, biomimetic textures with different densities inspired by the short-tailed shrew's claw were designed using biomimetic principles. These textures were applied to the surface of 65Mn steel using laser processing technology. This study investigated the effects of these bionic textures on the tribological properties of 65Mn steel surfaces in two environments: dry friction and soil friction. Friction and wear tests were conducted, and the friction coefficient, wear morphology, and wear quality were measured using a friction and wear testing machine, a scanning electron microscope (SEM), and a three-dimensional profilometer. The results indicate that under dry friction conditions, the tribological properties of specimens with bionic textures were significantly improved compared to non-textured specimens. The frictional properties of the specimens with bionic textures were optimized at a texture density of 20%, with an average coefficient of friction reduction of 24%. Under soil friction conditions, the samples with bionic textures demonstrated better tribological performance at densities of 20% and 30% compared to the non-textured samples, with decreases in the average coefficient of friction of 1.3% and 2.9%. The special surface structure of the bionic short-tailed shrew claw can effectively reduce friction heat effects and wear, demonstrating significant anti-friction and anti-wear performance.