BMC BiotechnologyPub Date : 2024-12-18DOI: 10.1186/s12896-024-00928-4
Bo Wang, Jun Wei, Le Zhang, Hui Jiang, Cheng Jin, Shaowen Huang
{"title":"Soft sensor modeling method for Pichia pastoris fermentation process based on substructure domain transfer learning.","authors":"Bo Wang, Jun Wei, Le Zhang, Hui Jiang, Cheng Jin, Shaowen Huang","doi":"10.1186/s12896-024-00928-4","DOIUrl":"10.1186/s12896-024-00928-4","url":null,"abstract":"<p><strong>Background: </strong>Aiming at the problem that traditional transfer methods are prone to lose data information in the overall domain-level transfer, and it is difficult to achieve the perfect match between source and target domains, thus reducing the accuracy of the soft sensor model.</p><p><strong>Methods: </strong>This paper proposes a soft sensor modeling method based on the transfer modeling framework of substructure domain. Firstly, the Gaussian mixture model clustering algorithm is used to extract local information, cluster the source and target domains into multiple substructure domains, and adaptively weight the substructure domains according to the distances between the sub-source domains and sub-target domains. Secondly, the optimal subspace domain adaptation method integrating multiple metrics is used to obtain the optimal projection matrices <math><msub><mi>W</mi> <mi>s</mi></msub> </math> and <math><msub><mi>W</mi> <mi>t</mi></msub> </math> that are coupled with each other, and the data of source and target domains are projected to the corresponding subspace to perform spatial alignment, so as to reduce the discrepancy between the sample data of different working conditions. Finally, based on the source and target domain data after substructure domain adaptation, the least squares support vector machine algorithm is used to establish the prediction model.</p><p><strong>Results: </strong>Taking Pichia pastoris fermentation to produce inulinase as an example, the simulation results verify that the root mean square error of the proposed soft sensor model in predicting Pichia pastoris concentration and inulinase concentration is reduced by 48.7% and 54.9%, respectively.</p><p><strong>Conclusion: </strong>The proposed soft sensor modeling method can accurately predict Pichia pastoris concentration and inulinase concentration online under different working conditions, and has higher prediction accuracy than the traditional soft sensor modeling method.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"104"},"PeriodicalIF":3.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiotechnologyPub Date : 2024-12-18DOI: 10.1186/s12896-024-00932-8
Cecilia Echa, Maurice Ekpenyong, Uwamere Edeghor, David Ubi, Philomena Edet, Daniel Itam, Richard Antigha, Atim Asitok, Sylvester Antai
{"title":"Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.","authors":"Cecilia Echa, Maurice Ekpenyong, Uwamere Edeghor, David Ubi, Philomena Edet, Daniel Itam, Richard Antigha, Atim Asitok, Sylvester Antai","doi":"10.1186/s12896-024-00932-8","DOIUrl":"10.1186/s12896-024-00932-8","url":null,"abstract":"<p><strong>Background: </strong>The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol. Biological and/or enzymatic pretreatment of lignocellulosic waste substrates offers eco-friendly and sustainable second-generation bioethanol production opportunities that may also contribute to waste management without affecting food security. In this study, we isolated a promising filamentous bacterium from the guts of cockroaches with commendable cellulolytic activity. The matrices of sequential statistics, from one-factor-at-a-time (OFAT) through significant variable screening by Placket-Burman design (PBD) to Box‒Behnken design of a surface methodology (BBD-RSM), were employed for major medium variable modeling and optimization by solid-state fermentation. The optimized solutions were used to saccharify lignocellulose in real time, and the kinetics of reducing sugar accumulation were subsequently evaluated to determine the maximum concentration of sugars extracted from the lignocellulose. The hydrolysate with the highest reducing sugar concentration was subjected to fermentation by Saccharomyces cerevisiae, Klyuveromyces marxianus and a mixture of both, after which the ethanol yield, concentration and fermentation efficiency were determined.</p><p><strong>Results: </strong>Sequential statistics revealed that rice husk powder, corn cob powder, peptone and inoculum volume were significant variables for the bioprocess at 59.8% (w/w) rice husk powder, 17.8% (w/w) corn cob powder, 38.8% (v/w; 10<sup>9</sup> cfu/mL) inoculum volume, and 5.3% (w/w) peptone. These conditions mediated maximum cellulolytic and xylanolytic activities of 219.93 ± 18.64 FPU/mL and 333.44 ± 22.74 U/mL, respectively. The kinetics of saccharification of the lignocellulosic waste under optimized conditions revealed two peaks of reducing sugar accumulation between 16 and 32 h and another between 56 and 64 h.</p><p><strong>Conclusions: </strong>Although K. marxianus had a significantly greater fermentation efficiency than S. cerevisiae, fermentation with a 50:50 (% v/v) mixture of both yeasts led to 88.32% fermentation efficiency with 55.56 ± 0.19 g/L crude bioethanol, suggesting that inexpensive, eco-friendly and sustainable bioethanol production could be obtained from renewable energy sources.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"102"},"PeriodicalIF":3.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiotechnologyPub Date : 2024-12-12DOI: 10.1186/s12896-024-00931-9
Savvina Leontakianakou, Carl Grey, Eva Nordberg Karlsson, Roya R R Sardari
{"title":"An improved HPAEC-PAD method for the determination of D-glucuronic acid and 4-O-methyl-D-glucuronic acid from polymeric and oligomeric xylan.","authors":"Savvina Leontakianakou, Carl Grey, Eva Nordberg Karlsson, Roya R R Sardari","doi":"10.1186/s12896-024-00931-9","DOIUrl":"10.1186/s12896-024-00931-9","url":null,"abstract":"<p><p>Glucuronic acid (GlcA) is an abundant substituent in hardwood xylan, and it is often found in its methylated form as methyl glucuronic acid (MeGlcA). GlcA and MeGlcA are sugar acids, bound to the xylose backbone at position O-2, and their presence can affect the digestibility of the polymer. Currently, detection of released GlcA or MeGlcA from synthetic substrates such as pNP-glucuronic acid can be achieved with colorimetric assays, whereas analysis from natural substrates such as xylan is more complicated. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) with an isocratic elution profile has been proposed for quantification of uronic acids in acid-hydrolysed wood samples. However, achieving sufficient separation for comprehensive analysis of hardwood-related xylan components, particularly MeGlcA remains challenging with this methodology. This study offers modified protocols for improved separation by introducing gradient elution profiles to effectively separate hydrolysed hardwood-related compounds, including MeGlcA, and GlcA within a single analytical run. The method showed excellent reproducibility and a standard curve of MeGlcA assured first order linearity in a wide range of concentrations, making the method excellent for quantification.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"100"},"PeriodicalIF":3.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical and Heat Treatment for Viral Inactivation in Porcine-Derived Gelatin.","authors":"Francois Marie Ngako Kadji, Maiko Shimizu, Kazuki Kotani, Masanori Kishimoto, Yosuke Hiraoka","doi":"10.1186/s12896-024-00922-w","DOIUrl":"10.1186/s12896-024-00922-w","url":null,"abstract":"<p><strong>Background: </strong>It is mandatory to demonstrate the removal or inactivation of potential viral contaminants in the manufacturing processes of pharmaceuticals derived from biomaterials. Porcine-derived gelatin is used in various medical fields, including regenerative medicine, tissue engineering, and medical devices. However, the steps of virus inactivation in the gelatin manufacturing process are poorly defined. In this study we evaluated virus inactivation in two steps of the gelatin manufacturing process.</p><p><strong>Methods: </strong>Pig skin (4.5 g), including solid pieces as intermediate products, was spiked with model viruses, including CPV (canine parvovirus), BAV (bovine adenovirus), BPIV3 (bovine parainfluenza type 3), PRV (pseudorabies virus), BReoV3 (bovine reovirus type 3), and PPV (porcine parvovirus), and underwent chemical treatment with alkaline ethanol or heat treatment at 62 °C followed by inoculation in relevant cell cultures. Viral titers in the samples were calculated based on the Behrens-Kärber method.</p><p><strong>Results: </strong>Model viruses were inactivated at different rates; however, effective inactivation of all model viruses was demonstrated by an LRV (log reduction value) over 4 by both chemical and heat treatment, and chemical treatment demonstrated rapid inactivation compared to heat treatment.</p><p><strong>Conclusion: </strong>The chemical and heat treatment steps exhibited meaningful viral inactivation capacity. They are integrated parts in the extraction and manufacturing process of porcine-derived gelatin, ensuring virus safety for use in medical applications.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"99"},"PeriodicalIF":3.5,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiotechnologyPub Date : 2024-11-28DOI: 10.1186/s12896-024-00929-3
Yusuf Ersali
{"title":"Control of hyperhydricity of Pistacia khinjuk stocks in vitro shoots.","authors":"Yusuf Ersali","doi":"10.1186/s12896-024-00929-3","DOIUrl":"10.1186/s12896-024-00929-3","url":null,"abstract":"<p><p>Hyperhydricity is the most extensive physiological disorder during in vitro propagation. This disturbance can induce anatomical, morphological and physiological problems that cause serious damage. The factors that cause hyperhydricity are the composition of nutrient media and cultures conditions. To reduce the hyperhydricity of Pistacia khinjuk, ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>), calcium chloride (CaCl<sub>2</sub>·2H<sub>2</sub>O), cytokinins of meta-topolin (mT) and 6-benzylaminopurine (BAP) at different concentrations were investigated in Murashige and Skoog (MS) medium. The lowest percentage of hyperhydricity (34.30%) were obtained from the medium containing 1650 mg/L NH<sub>4</sub>NO<sub>3</sub>, 110 mg/L CaCl<sub>2</sub>·2H<sub>2</sub>O and1 mg/L mT; the highest percentage of hyperhydricity (68.42%) were obtained from the medium containing 206.25 mg/L NH<sub>4</sub>NO<sub>3</sub>, 440 mg/L CaCl<sub>2</sub>·2H<sub>2</sub>O and 0.5 mg/L BAP. The maximum average number of shoots per explant (2.45), average shoots length (18.47 mm) and proliferation rate (85%) were obtained from the medium containing 1650 mg/L NH4NO3, 110 mg/L CaCl2·2H2O of MS and 1 mg/L mT. In addition, when soluble protein (2.12 mg/g) and total chlorophyll a, b (0.96 mg/g) value of normal (non-hyperhydric) shoots were higher than hyperhydric shoots, carotenoid (11.75 µg /g) and water content (78.70%) value of normal shoots were lower than hyperhydric shoots. This study concludes that the hyperhydricity percentage of in vitro P. khinjuk shoots was reduced (12.8%) on modified MS medium with NH<sub>4</sub>NO<sub>3</sub>, CaCl<sub>2</sub>·2H<sub>2</sub>O and mT according to standard MS medium.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"97"},"PeriodicalIF":3.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiotechnologyPub Date : 2024-11-28DOI: 10.1186/s12896-024-00915-9
Wei Li, Xianzhou Lu, Liangjun Jiang, Xiangjiang Wang
{"title":"Biosafety and pharmacokinetic characteristics of polyethylene pyrrolidone modified nano selenium in rats.","authors":"Wei Li, Xianzhou Lu, Liangjun Jiang, Xiangjiang Wang","doi":"10.1186/s12896-024-00915-9","DOIUrl":"10.1186/s12896-024-00915-9","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the biocompatibility and pharmacokinetic characteristics of polyvinyl pyrrolidone-modified selenium nanoparticles (PVP-Se NPs). Understanding the biosafety of PVP-Se NPs is crucial due to their potential applications in mitigating oxidative stress-related diseases and improving drug delivery systems.</p><p><strong>Methods: </strong>Selenium nanoparticles were prepared using a sodium selenite solution, followed by PVP modification. Particle size analysis was conducted using dynamic light scattering (DLS), and particle morphology was observed using transmission electron microscopy (TEM). Different concentrations of PVP-Se NPs were intraperitoneally injected into SD rats, and the survival rate was observed. Liver and kidney tissues, urine, feces, and blood samples were collected at the highest safe dose, and the concentration of selenium ions was measured.</p><p><strong>Results: </strong>The average particle size of PVP-Se NPs was 278.4 ± 124.8 nm, exhibiting a semi-spherical shape. The maximum safe dose of PVP-Se NPs for intraperitoneal injection in rats was approximately 320 µg/kg. At this dose, the content of PVP-Se NPs significantly increased in the liver and kidney tissues from day 1 to day 3, in urine and feces during the first 8 h, and in blood during the first 2 h, followed by a gradual decrease.</p><p><strong>Conclusion: </strong>When administered at a safe dose, PVP-Se NPs do not damage liver and kidney tissues and can be eliminated from the body through liver and kidney metabolism without accumulation.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"98"},"PeriodicalIF":3.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiotechnologyPub Date : 2024-11-26DOI: 10.1186/s12896-024-00917-7
Petter Paulsen Thoresen, Jonas Fahrni, Alok Patel, Josefine Enman, Tomas Gustafsson, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas
{"title":"Organosolv-derived lipids from hemicellulose and cellulose, and pre-extracted tannins as additives upon hydrothermal liquefaction (HTL) of spruce bark lignins to bio-oil.","authors":"Petter Paulsen Thoresen, Jonas Fahrni, Alok Patel, Josefine Enman, Tomas Gustafsson, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas","doi":"10.1186/s12896-024-00917-7","DOIUrl":"10.1186/s12896-024-00917-7","url":null,"abstract":"<p><p>The rise in global temperature and accumulation of petroleum-based wastes in the environment forces the scientific focus towards renewable alternatives. In the present work, an under-exploited resource - spruce bark - is investigated as a raw material for production of bio-oil as a liquid energy carrier. To enhance the energy-content of the produced bio-crude, ultimately being produced through hydrothermal liquefaction, the polysaccharides were extracted through organosolv fractionation and converted to lipids by oleaginous microorganisms. The effect originating from tannins was also investigated by performing a pre-extraction before the organosolv fractionation. It was found that performing the organosolv fractionation and upgrading the isolated organosolv lignin to bio-oil greatly reduced the oxygen content of the oil fraction thereby improving its energy content, and introducing upgraded polysaccharides in the form of lipids, as well as pre-extracted tannins, caused clear changes in the product distribution of the final bio-oil and kept a final product with low oxygen content. The other factor largely influencing the product distribution originated from the various heating rates tested by altering operational mode of the HTL process between batch and semi-continuous. Ultimately, performing the organosolv fractionation and individual upgrading of the polysaccharides had a beneficial effect on reducing the final solids content and enhancing the liquid oil yield.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"96"},"PeriodicalIF":3.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced extracellular production of Coprinopsis cinerea laccase Lcc9 in Aspergillus niger by gene expression cassette and bioprocess optimization.","authors":"Dongbang Yao, Xiaozhuang Liu, Hui Wang, Juanjuan Liu, Zemin Fang, Yazhong Xiao","doi":"10.1186/s12896-024-00924-8","DOIUrl":"10.1186/s12896-024-00924-8","url":null,"abstract":"<p><strong>Background: </strong>The laccase Lcc9 from Coprinopsis cinerea has optimal catalytic activity at moderate to alkaline pH conditions, making it invaluable for industrial applications. However, C. cinerea naturally secretes Lcc9 at low expression levels, which limits the industrial application of Lcc9 on a large scale. Recombinant production of Lcc9 using Aspergillus niger would be an effective way to achieve its high production.</p><p><strong>Results: </strong>This study achieved the secretory production of Lcc9 in A. niger and established an efficient transformation procedure for A. niger by optimizing its protoplast preparation system. The transformation efficiency of A. niger was increased 3.8-fold under the optimal system (cell wall digestion enzyme solution: 2% cellulase, 1% snailase, 1% lyticase, and 0.5% lysozyme; incubation time: 3 h; incubation temperature: 37 ℃; culture time: 48 h). The extracellular yield of Lcc9 was enhanced by optimizing gene expression cassette and bioprocess. First, the strain AnGgcL (containing P<sub>gpdA</sub>) mediated by the SP<sub>CAT</sub>, a signal peptide of the extracellular high abundance protein catalase, had an extracellular laccase activity of 10 U/L after shake flask fermentation. Then, by optimizing promoter and signal peptide combinations that regulate lcc9 expression, the strain AnGcgL mediated by P<sub>citA</sub>-SP<sub>GlaA</sub> had an extracellular laccase activity of 20 U/L. Subsequently, the strain AnRcgL1 (containing P<sub>citA</sub>-SP<sub>GlaA</sub>) obtained by random integration had an extracellular laccase activity of 86 U/L. Sequencing revealed that the lcc9 expression cassette was integrated into the citrate synthase gene locus in the AnRcgL1 genome in a 9-copy form. By optimizing the microparticle, osmolyte, and Cu<sup>2+</sup> in the fermentation medium, the AnRcgL1 extracellular laccase activity was further increased to 1566.7 U/L, which was 156.7-fold higher than that of AnGgcL. Furthermore, its extracellular laccase activity was increased to 1961 U/L in a 1-L fermenter.</p><p><strong>Conclusions: </strong>To our knowledge, this study is the first to report the recombinant extracellular production of the C. cinerea laccase Lcc9 in A. niger and to use SP<sub>CAT</sub> in the A. niger expression system. The results of this study will help accelerate the industrial application of Lcc9. Moreover, the strategy used in this work provides methodological guidance for increasing other exogenous protein yields in A. niger.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"95"},"PeriodicalIF":3.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiotechnologyPub Date : 2024-11-19DOI: 10.1186/s12896-024-00923-9
Luyao Yu, Kun He, Yu Wu, Kai Hao, Yun Wang, Jinbo Yao, Yuxue Zhao, Qiaoxian Yu, Yanghui Shen, Mengxuan Chen, Ke Xu, Xinfeng Zhang, Lei Zhang
{"title":"UGT708S6 from Dendrobium catenatum, catalyzes the formation of flavonoid C-glycosides.","authors":"Luyao Yu, Kun He, Yu Wu, Kai Hao, Yun Wang, Jinbo Yao, Yuxue Zhao, Qiaoxian Yu, Yanghui Shen, Mengxuan Chen, Ke Xu, Xinfeng Zhang, Lei Zhang","doi":"10.1186/s12896-024-00923-9","DOIUrl":"10.1186/s12896-024-00923-9","url":null,"abstract":"<p><strong>Background: </strong>Dendrobium catenatum is a perennial herb of the genus Dendrobium orchidaceae. It has been known as \"Golden Grass, Soft Gold\" since ancient times with effects of strengthening the body, benefiting the stomach, generating body fluid, nourishing Yin and clearing internal heat. The flowers of D. catenatum have anti-oxidation, immune regulation and other biological activities. The composition analysis of flowers showed that flavonoid glycosides were significantly accumulated in floral tissue. However, in the flowers of D. catenatum, there was only one case of the UDP-glycosyltransferase (UGT) responsible for the glycosylation of flavonoids has been reported.</p><p><strong>Result: </strong>In this study, a new UGT (named UGT708S6) was cloned from D. catenatum flowers rich in O-glycosides and C-glycosides, and its function and biochemical properties were characterized. Through homology comparison and molecular docking, we identified the key amino acid residues affecting the catalytic function of UGT708S6. The glycosyltransferase UGT708S6 was characterized and demonstrated C-glycosyltransferase (CGT) activity in vitro assay using phloretin and 2-hydroxynaringenin as sugar acceptors. The catalytic promiscuity assay revealed that UGT708S6 has a clear sugar donor preference, and displayed O-glycosyltransferase (OGT) activity towards luteolin, naringenin and liquiritigenin. Furthermore, the catalytic characteristics of UGT708S6 were explored, shedding light on the structural basis of substrate promiscuity and the catalytic mechanism involved in the formation of flavonoid C-glycosides. R271 was a key amino acid residue site that sustained the catalytic reaction. The smaller binding pocket resulted in the production of new O-glycosides and the reduction of C-glycosides. This highlighted the importance of the binding pocket in determining whether C-glycosides or O-glycosides were produced.</p><p><strong>Conclusions: </strong>The findings suggest that UGT708S6 holds promise as a new glycosyltransferase for synthesizing flavonoid glycosides and offer valuable insights for further understanding the catalytic mechanisms of flavonoid glycosyltransferases.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"94"},"PeriodicalIF":3.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the impact of Cold plasma on Seedling Growth properties, seed germination, and soybean antioxidant enzyme activity.","authors":"Khadijeh Sayahi, Amir Hossein Sari, Aidin Hamidi, Bahareh Nowruzi, Farshid Hassani","doi":"10.1186/s12896-024-00921-x","DOIUrl":"10.1186/s12896-024-00921-x","url":null,"abstract":"<p><p>Cold atmospheric pressure plasma (CAP) has garnered significant attention in recent years for its potential applications in biomedical, environmental, and agricultural fields. Cold plasma treatment exhibits a variety of effects in agricultural applications, including impacts on seed germination and seedling growth; however, further research is required. Soybean serves as a fundamental source of nutrients for both animals and humans. Soybean seeds possess impermeable and thick testae, which results in prolonged germination times and suboptimal germination rates. The soybeans exhibit low uniformity. As a result, poor crop establishment and yield reduction are inevitable outcomes. Therefore, the purpose of this study was to examine the effects of Iranian soybean cultivars, such as Sari, Saba, Arian, Katoul, and Williams, on seedling growth properties, seed germination, and antioxidant enzyme activity, using argon at time intervals of 30, 60, 180, 300, and 420 s. Cold plasma treatment significantly enhanced germination potential from 1.18 to 66.97%, germination index from 0.50 to 60.09%, germination rate from 1.78 to 32.17%, seedling length from 2.70 cm to 78.13 cm, root length from 2.87 cm to 56.13 cm, and seedling dry weight from 1.80 g to 36.63 g. Additionally, CAT activity increased from 0.88- to 4.40-fold, SOD activity from 0.86- to 5.89-fold, and APX activities from 0.40- to 4.01-fold compared to the control treatment. The findings indicated that the samples exhibited optimal results at treatment durations of 60 and 180 s. The influence of plasma on the antioxidant responses of seedlings, seed germination, and growth characteristics was contingent upon the duration of treatment. Cold plasma, when applied for an appropriate duration, may enhance soybean seedling growth characteristics and seed germination.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"93"},"PeriodicalIF":3.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}