Biodegradation of patulin in apple juice by phosphoribosyl transferase (URA5): implications for food safety.

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kopano Mapheto, Oluwakamisi Festus Akinmoladun, Tiisetso Colleen Maphaisa, Patrick Berka Njobeh
{"title":"Biodegradation of patulin in apple juice by phosphoribosyl transferase (URA5): implications for food safety.","authors":"Kopano Mapheto, Oluwakamisi Festus Akinmoladun, Tiisetso Colleen Maphaisa, Patrick Berka Njobeh","doi":"10.1186/s12896-025-00992-4","DOIUrl":null,"url":null,"abstract":"<p><p>Patulin (PAT), a mycotoxin produced primarily by Penicillium expansum, poses significant health risks and frequently contaminates apples and apple-derived products, often exceeding permissible safety limits. This study investigated the potential of orotate phosphoribosyl transferase (URA5) to degrade PAT in apple juice under controlled conditions. PAT degradation was assessed at initial concentrations of 100 µg/L and 250 µg/L, with enzymatic treatment using 0.2 mg/mL URA5. Samples were incubated for up to 24 h, and PAT degradation was monitored at time intervals of 3, 6, 9, 12, 18, and 24 h using liquid chromatography-mass spectrometry (LC-MS). The results demonstrated a time-dependent PAT degradation, with significant reductions observed as incubation time increased. After 6 h, PAT concentrations decreased to 57.30 µg/L and 112.69 µg/L for the 100 µg/L and 250 µg/L samples, respectively. At 12 h, PAT levels in the 100 µg/L sample fell just below the permissible limit (50 µg/kg), while substantial degradation was observed in the 250 µg/L sample. By 18 h, PAT concentrations dropped further to 47.22 µg/L and 40.10 µg/L, reaching safe consumption levels. After 24 h, degradation rates reached 96.36% and 98.25%, reducing PAT levels to 30.22 µg/L and 31.48 µg/L, confirming the efficacy of URA5 in detoxifying PAT-contaminated apple juice. The findings highlight the potential application of URA5 as a biocatalyst for PAT detoxification in the fruit juice industry. Compared to existing detoxification methods, enzyme-based degradation presents a promising, environmentally friendly, cost-effective, and non-toxic alternative. Further studies should explore its feasibility in large-scale processing and its interaction with other contaminants in commercial apple juice production.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"100"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12421764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-00992-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patulin (PAT), a mycotoxin produced primarily by Penicillium expansum, poses significant health risks and frequently contaminates apples and apple-derived products, often exceeding permissible safety limits. This study investigated the potential of orotate phosphoribosyl transferase (URA5) to degrade PAT in apple juice under controlled conditions. PAT degradation was assessed at initial concentrations of 100 µg/L and 250 µg/L, with enzymatic treatment using 0.2 mg/mL URA5. Samples were incubated for up to 24 h, and PAT degradation was monitored at time intervals of 3, 6, 9, 12, 18, and 24 h using liquid chromatography-mass spectrometry (LC-MS). The results demonstrated a time-dependent PAT degradation, with significant reductions observed as incubation time increased. After 6 h, PAT concentrations decreased to 57.30 µg/L and 112.69 µg/L for the 100 µg/L and 250 µg/L samples, respectively. At 12 h, PAT levels in the 100 µg/L sample fell just below the permissible limit (50 µg/kg), while substantial degradation was observed in the 250 µg/L sample. By 18 h, PAT concentrations dropped further to 47.22 µg/L and 40.10 µg/L, reaching safe consumption levels. After 24 h, degradation rates reached 96.36% and 98.25%, reducing PAT levels to 30.22 µg/L and 31.48 µg/L, confirming the efficacy of URA5 in detoxifying PAT-contaminated apple juice. The findings highlight the potential application of URA5 as a biocatalyst for PAT detoxification in the fruit juice industry. Compared to existing detoxification methods, enzyme-based degradation presents a promising, environmentally friendly, cost-effective, and non-toxic alternative. Further studies should explore its feasibility in large-scale processing and its interaction with other contaminants in commercial apple juice production.

Abstract Image

Abstract Image

Abstract Image

磷酸核糖基转移酶(URA5)降解苹果汁中的展霉素:对食品安全的影响。
棒曲霉素(PAT)是一种主要由扩张青霉产生的霉菌毒素,对健康构成重大风险,经常污染苹果和苹果衍生产品,通常超过允许的安全限度。本研究在控制条件下研究了羊角酸磷酸核糖基转移酶(URA5)降解苹果汁中PAT的潜力。在初始浓度为100µg/L和250µg/L时,使用0.2 mg/mL URA5进行酶处理,评估PAT的降解情况。样品孵育长达24小时,使用液相色谱-质谱(LC-MS)在3、6、9、12、18和24小时的时间间隔内监测PAT的降解。结果表明,PAT降解与时间有关,随着孵育时间的增加,显著降低。6 h后,100µg/L和250µg/L样品的PAT浓度分别降至57.30µg/L和112.69µg/L。在12小时,100µg/L样品中的PAT水平刚好低于允许限值(50µg/kg),而在250µg/L样品中观察到大量降解。18 h时,PAT浓度进一步下降至47.22µg/L和40.10µg/L,达到安全消耗水平。24 h后,降解率分别达到96.36%和98.25%,PAT水平分别降至30.22µg/L和31.48µg/L,证实了URA5对PAT污染苹果汁的解毒效果。这一发现突出了URA5作为一种生物催化剂在果汁工业中脱毒的潜在应用。与现有的解毒方法相比,基于酶的降解是一种有前途的、环境友好的、成本效益高的、无毒的替代方法。进一步的研究应探讨大规模加工的可行性及其与商业苹果汁生产中其他污染物的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biotechnology
BMC Biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.60
自引率
0.00%
发文量
34
审稿时长
2 months
期刊介绍: BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信