Erin Brettmann, Fuqiang Chen, Stephen Beishir, Graeme Garvey
{"title":"胞嘧啶碱基编辑器dna结合域融合编辑窗口调制在RNP格式。","authors":"Erin Brettmann, Fuqiang Chen, Stephen Beishir, Graeme Garvey","doi":"10.1186/s12896-025-01020-1","DOIUrl":null,"url":null,"abstract":"<p><p>Base editing technologies allow for the precise and efficient installation of defined nucleotide substitutions into a target genome without the introduction of double strand breaks or DNA templates. Here we describe two recombinant, protein format cytosine base editors (CBEs) that efficiently catalyze the installation of cytosine-to-thymine edits, termed \"Flexible\" and \"Precision.\" Flexible exhibits a wide editing window, while Precision uses a fused single-stranded DNA binding protein to narrow the editing window, lowering the risk of editing multiple cytosine residues at the target site. We show that co-transfection with uracil glycosylase inhibitor protein increases the proportion of substitutions that are C-to-T and the ratio of C-to-T editing to indel formation, thus reducing undesired editing outcomes. We use in vitro editing assays to characterize our editors and show a preference for cytosine residues preceded by thymine (TpC dinucleotides) and unmethylated cytosine residues.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"92"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cytosine base editor-DNA binding domain fusions for editing window modulation in the RNP format.\",\"authors\":\"Erin Brettmann, Fuqiang Chen, Stephen Beishir, Graeme Garvey\",\"doi\":\"10.1186/s12896-025-01020-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Base editing technologies allow for the precise and efficient installation of defined nucleotide substitutions into a target genome without the introduction of double strand breaks or DNA templates. Here we describe two recombinant, protein format cytosine base editors (CBEs) that efficiently catalyze the installation of cytosine-to-thymine edits, termed \\\"Flexible\\\" and \\\"Precision.\\\" Flexible exhibits a wide editing window, while Precision uses a fused single-stranded DNA binding protein to narrow the editing window, lowering the risk of editing multiple cytosine residues at the target site. We show that co-transfection with uracil glycosylase inhibitor protein increases the proportion of substitutions that are C-to-T and the ratio of C-to-T editing to indel formation, thus reducing undesired editing outcomes. We use in vitro editing assays to characterize our editors and show a preference for cytosine residues preceded by thymine (TpC dinucleotides) and unmethylated cytosine residues.</p>\",\"PeriodicalId\":8905,\"journal\":{\"name\":\"BMC Biotechnology\",\"volume\":\"25 1\",\"pages\":\"92\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12896-025-01020-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-01020-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cytosine base editor-DNA binding domain fusions for editing window modulation in the RNP format.
Base editing technologies allow for the precise and efficient installation of defined nucleotide substitutions into a target genome without the introduction of double strand breaks or DNA templates. Here we describe two recombinant, protein format cytosine base editors (CBEs) that efficiently catalyze the installation of cytosine-to-thymine edits, termed "Flexible" and "Precision." Flexible exhibits a wide editing window, while Precision uses a fused single-stranded DNA binding protein to narrow the editing window, lowering the risk of editing multiple cytosine residues at the target site. We show that co-transfection with uracil glycosylase inhibitor protein increases the proportion of substitutions that are C-to-T and the ratio of C-to-T editing to indel formation, thus reducing undesired editing outcomes. We use in vitro editing assays to characterize our editors and show a preference for cytosine residues preceded by thymine (TpC dinucleotides) and unmethylated cytosine residues.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.