Biogeochemistry最新文献

筛选
英文 中文
Decoupling of dissolved organic carbon (DOC) and dissolved black carbon (DBC) in a temperate fluvial network 温带河网中溶解有机碳(DOC)和溶解黑碳(DBC)的解耦关系
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-08-19 DOI: 10.1007/s10533-024-01172-w
Adrian M. Bass, Chao Gu
{"title":"Decoupling of dissolved organic carbon (DOC) and dissolved black carbon (DBC) in a temperate fluvial network","authors":"Adrian M. Bass,&nbsp;Chao Gu","doi":"10.1007/s10533-024-01172-w","DOIUrl":"10.1007/s10533-024-01172-w","url":null,"abstract":"<div><p>Black carbon (BC) is a significant component of the global carbon cycle both in terrestrial and aquatic systems. Dissolved black carbon (DBC) is a significant portion of the total dissolved organic carbon (DOC) pool and represents a major flux of recalcitrant carbon to the coastal and deep oceans. Dissolved black carbon can originate from multiple sources related to its relative biogeochemical reactivity with the dynamics of highly recalcitrant DBC integral to long-term sequestration. Thus, understanding how the more recalcitrant fractions of DBC varies in diverse catchments is critical and currently underexplored. We used hydrogen pyrolysis to isolate the fraction of DBC with aromatic clusters above 7 rings, representing the more stable components. Here we report the dynamics of DBC<sub>HyPy</sub> over a hydrological year in a temperate catchment, with a long history of coal mining extraction. Quarterly measurements of DBC were undertaken from two main channel and four tributary sites. Hydrogen pyrolysis derived DBC comprised a significant percentage of the total DOC flux (3.2% to 28.3%) and included significant spatial variability. Unlike other studies examining more reactive DBC fractions, bulk DOC concentrations and DBC<sub>HyPy</sub> were poorly correlated when considered over an annual scale. Rather, DBC<sub>HyPy</sub> was correlated with indicators of groundwater such as dissolved inorganic carbon and conductivity. Data suggest a consistent source of DBC<sub>HyPy</sub> not subject to the same mobilisation drivers as DOC, which shows substantial seasonality. Rather, our data shows a potentially consistent supply of stable DBC originating from the coal mining-influenced groundwater. Petrogenic sources of DBC have been poorly constrained to date, the data presented here suggests in some catchments it may be significant and yield catchment scale DOC-DBC decoupling. The dynamics of DBC have implications for carbon fluxes, pollution transport and water quality/treatment requirements. These preliminary findings suggest potentially complex drivers in spatially heterogeneous catchments, contrasting with previous work finding tight DOC-DBC mobilisation dynamics.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 10","pages":"1269 - 1279"},"PeriodicalIF":3.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01172-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus inactivation mitigates the effect of warm winters in a temperate shallow lake (Mielenko Lake, Poland) 磷失活减轻了温带浅水湖(波兰米连科湖)暖冬的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-08-19 DOI: 10.1007/s10533-024-01173-9
Renata Augustyniak-Tunowska, Rafał Karczmarczyk, Jolanta Grochowska, Michał Łopata, Agnieszka Napiórkowska-Krzebietke, Miquel Lürling
{"title":"Phosphorus inactivation mitigates the effect of warm winters in a temperate shallow lake (Mielenko Lake, Poland)","authors":"Renata Augustyniak-Tunowska,&nbsp;Rafał Karczmarczyk,&nbsp;Jolanta Grochowska,&nbsp;Michał Łopata,&nbsp;Agnieszka Napiórkowska-Krzebietke,&nbsp;Miquel Lürling","doi":"10.1007/s10533-024-01173-9","DOIUrl":"10.1007/s10533-024-01173-9","url":null,"abstract":"<div><p>Direct and indirect anthropopressure on water ecosystems is the serious problem throughout the world.. In the Northern Hemisphere, an increase in average air temperatures is observed, which implies the occurrence of a shorter period of snow and ice cover during the winter season. The winter 2019/2020 was unusual, because that was the first time in the record, that a complete lack of permanent ice cover was observed on numerous lakes in Poland. Such unusual conditions could influence lake functioning. Hence we analyzed the chemistry of the water–sediment interface (near-bottom and interstitial water and sediment) in the shallow, eutrophic Mielenko Lake (area 7.9 ha, max depth 1.9 m) in 2013 and 2019–2022 period to assess the influence of prolonged water circulation on the bottom zone. Mielenko Lake was subjected to a phosphorus inactivation procedure using Al and Fe salts (PAX 18, PIX 111) in 2020 and 2021. Our research revealed that unusually prolonged winter circulation caused a significant decrease in organic matter content in bottom sediment in 2020, as well as a decrease in NaOH-nrP fraction and TP amounts. That effect was short-term and it did not significantly influence the NaOH-rP fraction amounts. The released P was probably built in macrophytes biomass during vegetation season, because P inactivation has been limiting phytoplankton proliferation, and it favored shifting to a clearwater state with macrophytes domination. This was confirmed by decreasing in phytoplankton biomass, and a massive expansion of the macrophytes range noted in the second year of restoration. Our study shows, that P inactivation could mitigate the negative effects of warm winters in shallow lakes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 10","pages":"1243 - 1267"},"PeriodicalIF":3.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01173-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From deadwood to forest soils: quantifying a key carbon flux in boreal ecosystems 从枯木到森林土壤:量化北方生态系统中的关键碳通量
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-08-13 DOI: 10.1007/s10533-024-01170-y
Jogeir Stokland, Gry Alfredsen
{"title":"From deadwood to forest soils: quantifying a key carbon flux in boreal ecosystems","authors":"Jogeir Stokland,&nbsp;Gry Alfredsen","doi":"10.1007/s10533-024-01170-y","DOIUrl":"10.1007/s10533-024-01170-y","url":null,"abstract":"<div><p>Deadwood represents a dynamic carbon pool in forest ecosystems where microbial decomposition causes fluxes of CO<sub>2</sub> to the atmosphere through respiration and organic carbon to the soil through leakage and fragmentation. This study characterises different stages of deadwood of Norway spruce (<i>Picea abies</i>). 35 Norway spruce trees were sampled and categorized on a 0–5 decay scale. For the 14 trees in classes 0–3, two stem discs were collected from two heights. For the 21 trees in classes 4 and 5, a single sample per tree was taken, because decay was relatively uniform throughout the stem. The relative amount of hemicellulose and cellulose declined moderately from decay class 1 to 3 and substantially from decay class 3 to class 4 but small amounts were still present in decay class 5. The relative lignin proportion increased substantially from decay class 3 to 4 and dominated in decay class 5. Relative carbon content increased from 50 to 56% during the decomposition process due to the increasing accumulation of lignin residuals being a typical signature of brown rot decay. A laboratory experiment including three species of brown rot fungi verified decomposition close to 70% of Norway spruce biomass and resulted in 55% carbon content. This was similar to the carbon content in decay class 4 and 5. A novel approach is presented to quantify the carbon flux from deadwood to the soil. First, we calculated the residual proportion of carbon in decayed wood compared to the initial carbon content of live trees. Subsequently, we extended the calculation to determine the amount of remaining carbon from non-decayed wood that was transferred to the soil during each decay class. The approach showed that Norway spruce wood decomposition under field conditions transfers at least 39–47% of the initial wood carbon to the soil carbon pool, depending on soil type. This strengthens the previously under-communicated fact that the carbon flux from deadwood to soil is higher from brown rot decomposition in boreal forests than the corresponding carbon flux in temperate and tropical forests where deadwood is more influenced by white rot fungi.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 10","pages":"1225 - 1242"},"PeriodicalIF":3.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01170-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Riverine dissolved organic matter transformations increase with watershed area, water residence time, and Damköhler numbers in nested watersheds 在嵌套流域中,河流溶解有机物的转化随流域面积、水体停留时间和达姆克勒数的增加而增加
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-08-12 DOI: 10.1007/s10533-024-01169-5
Kevin A. Ryan, Vanessa A. Garayburu-Caruso, Byron C. Crump, Ted Bambakidis, Peter A. Raymond, Shaoda Liu, James C. Stegen
{"title":"Riverine dissolved organic matter transformations increase with watershed area, water residence time, and Damköhler numbers in nested watersheds","authors":"Kevin A. Ryan,&nbsp;Vanessa A. Garayburu-Caruso,&nbsp;Byron C. Crump,&nbsp;Ted Bambakidis,&nbsp;Peter A. Raymond,&nbsp;Shaoda Liu,&nbsp;James C. Stegen","doi":"10.1007/s10533-024-01169-5","DOIUrl":"10.1007/s10533-024-01169-5","url":null,"abstract":"<div><p>Quantifying the relative influence of factors and processes controlling riverine ecosystem function is essential to predicting future conditions under global change. Dissolved organic matter (DOM) is a fundamental component of riverine ecosystems that fuels microbial food webs, influences nutrient and light availability, and represents a significant carbon flux globally. The heterogeneous nature of DOM molecular composition and its propensity for interaction (i.e., functional diversity) can characterize riverine ecosystem function across spatiotemporal scales. To investigate fundamental drivers of DOM diversity, we collected seasonal water samples from 42 nested locations within five watersheds spanning multiple watershed sizes (~ 5 to 30,000 km<sup>2</sup>) across the United States. Patterns in DOM molecular richness, aromaticity, relative abundance of N-containing formulas, and putative biochemical transformations derived from high-resolution mass spectrometry were assessed across gradients of explanatory variables associated with watershed characteristics (e.g., watershed area, water residence time, land cover). We found that putative biochemical transformations were more strongly related to explanatory variables across watersheds than common bulk DOM parameters and that watershed area, surface water residence time and derived Damköhler numbers representing DOM reactivity timescales were strong predictors of DOM diversity. The data also indicate that catchment-specific land cover factors can significantly influence DOM diversity in diverging directions. Overall, the results highlight the importance of considering water residence time and land cover when interpreting longitudinal patterns in DOM chemistry and the continued challenge of identifying generalizable drivers that are transferable across watershed and regional scales for application in Earth system models. This work also introduces a Findable Accessible Interoperable Reusable (FAIR) dataset (&gt; 300 samples) to the community for future syntheses.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 10","pages":"1203 - 1224"},"PeriodicalIF":3.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01169-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors influencing seasonal chemistry patterns in Virginia mountain streams 影响弗吉尼亚山区溪流季节性化学模式的因素
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-08-06 DOI: 10.1007/s10533-024-01163-x
Ami L. Riscassi, Todd M. Scanlon, James N. Galloway
{"title":"Factors influencing seasonal chemistry patterns in Virginia mountain streams","authors":"Ami L. Riscassi,&nbsp;Todd M. Scanlon,&nbsp;James N. Galloway","doi":"10.1007/s10533-024-01163-x","DOIUrl":"10.1007/s10533-024-01163-x","url":null,"abstract":"<div><p>The relative influence of seasonal patterns in hydrological flow and seasonal differences in biological and geochemical activity on stream chemistry patterns is difficult to discern because they covary; temperate systems are characterized by lower mean flow in the summer (i.e. corresponding to deeper flow paths, elevated temperature, and biological activity), and higher mean flow in the winter (i.e. corresponding to shallower flow paths, depressed temperature, and biological dormancy). Using 2018 data, when seasonal stream flow conditions reversed, and two prior conventional water years, the relationship between monthly acid-relevant analyte concentrations and streamflow were compared within and between winter and summer to provide insight into controls on characteristic seasonal chemistry patterns at two mid-Appalachian sites with distinct geology (weatherable mafic and weather resistant siliciclastic). Acid neutralizing capacity (ANC) increased (1) with lower flow, in both seasons and (2) in summer, for all flow conditions. The compounding impacts resulted in a doubling of concentration from typical winter with high flow to summer with low flow at both sites. Base cation patterns tracked ANC at the mafic site, resulting in an ~ 60% increase of from winter with high flow to summer with low flow; distinctions between summer and winter contributed more to the seasonal pattern (72%) than changes in flow. Sulfate increased at the mafic site (1) with higher flow, in both seasons and (2) in winter, for all flow conditions, resulting in an ~ 50% increase from summer with low flow to winter with high flow; distinctions between winter and summer conditions and flow contributed similarly (40–60%) to the typical seasonal chemical pattern. The biogeochemical mechanism driving differences in stream chemistry between summer and winter for the same flow conditions is likely increased rates of natural acidification from elevated soil respiration in summer, resulting in greater bedrock weathering and sulfate adsorption. Findings highlight the significance and consistency of growing vs dormant season variations in temperature and biological activity in driving intra-annual patterns of stream solutes. This data set informs parameterization of hydro-biogeochemical models of stream chemistry in a changing climate at a biologically relevant, seasonal, timescale.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 10","pages":"1175 - 1201"},"PeriodicalIF":3.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01163-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term warming in a temperate forest accelerates soil organic matter decomposition despite increased plant-derived inputs 温带森林的长期变暖加速了土壤有机物的分解,尽管植物源性投入增加了
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-29 DOI: 10.1007/s10533-024-01165-9
Atzín X. San Román, Nivetha Srikanthan, Andreia A. Hamid, Thomas J. Muratore, Melissa A. Knorr, Serita D. Frey, Myrna J. Simpson
{"title":"Long-term warming in a temperate forest accelerates soil organic matter decomposition despite increased plant-derived inputs","authors":"Atzín X. San Román,&nbsp;Nivetha Srikanthan,&nbsp;Andreia A. Hamid,&nbsp;Thomas J. Muratore,&nbsp;Melissa A. Knorr,&nbsp;Serita D. Frey,&nbsp;Myrna J. Simpson","doi":"10.1007/s10533-024-01165-9","DOIUrl":"10.1007/s10533-024-01165-9","url":null,"abstract":"<div><p>Climate change may alter soil microbial communities and soil organic matter (SOM) composition. Soil carbon (C) cycling takes place over multiple time scales; therefore, long-term studies are essential to better understand the factors influencing C storage and help predict responses to climate change. To investigate this further, soils that were heated by 5 °C above ambient soil temperatures for 18 years were collected from the Barre Woods Soil Warming Study at the Harvard Forest Long-term Ecological Research site. This site consists of large 30 × 30 m plots (control or heated) where entire root systems are exposed to sustained warming conditions. Measurements included soil C and nitrogen concentrations, microbial biomass, and SOM chemistry using gas chromatography–mass spectrometry and solid-state <sup>13</sup>C nuclear magnetic resonance spectroscopy. These complementary techniques provide a holistic overview of all SOM components and a comprehensive understanding of SOM composition at the molecular-level. Our results showed that soil C concentrations were not significantly altered with warming; however, various molecular-level alterations to SOM chemistry were observed. We found evidence for both enhanced SOM decomposition and increased above-ground plant inputs with long-term warming. We also noted shifts in microbial community composition while microbial biomass remained largely unchanged. These findings suggest that prolonged warming induced increased availability of preferred substrates, leading to shifts in the microbial community and SOM biogeochemistry. The observed increase in gram-positive bacteria indicated changes in substrate availability as gram-positive bacteria are often associated with the decomposition of complex organic matter, while gram-negative bacteria preferentially break down simpler organic compounds altering SOM composition over time. Our results also highlight that additional plant inputs do not effectively offset chronic warming-induced SOM decomposition in temperate forests.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1159 - 1174"},"PeriodicalIF":3.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01165-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four decades of changing dissolved organic matter quality and stoichiometry in a Swedish forest stream 瑞典森林溪流四十年来溶解有机物质量和化学计量的变化
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-26 DOI: 10.1007/s10533-024-01166-8
Chris D. Evans, Sara Jutterström, Johanna Stadmark, Mike Peacock, Martyn Futter, Dolly Kothawala, Don Monteith, Filip Moldan
{"title":"Four decades of changing dissolved organic matter quality and stoichiometry in a Swedish forest stream","authors":"Chris D. Evans,&nbsp;Sara Jutterström,&nbsp;Johanna Stadmark,&nbsp;Mike Peacock,&nbsp;Martyn Futter,&nbsp;Dolly Kothawala,&nbsp;Don Monteith,&nbsp;Filip Moldan","doi":"10.1007/s10533-024-01166-8","DOIUrl":"10.1007/s10533-024-01166-8","url":null,"abstract":"<div><p>Dissolved organic matter (DOM) concentrations have risen by a factor of two or more across much of Europe and North America during recent decades. These increases have affected the carbon cycle, light regime, drinking water treatability, and the energy and nutrient budgets of lakes and streams. However, while trends in DOM quantity are well characterised, information on how/whether qualitative properties of DOM have changed are scarce. Here, we describe over 40 years of monitoring data from a forested headwater stream in the Gårdsjön experimental catchment, southwest Sweden, which provides a unique record of biogeochemical change, including optical and stoichiometric DOM quality metrics, spanning the entire period of recovery from acidification. For the period 1980–2020 we find a 71% reduction in decadal mean sulphate concentrations, and a similar reduction in inorganic aluminium concentrations, alongside a 64% increase in dissolved organic carbon (DOC) concentrations. Over the same period, colour (absorbance at 420 nm) increased almost twice as much as DOC, whereas dissolved organic nitrogen (DON) increased by only one third as much. These results demonstrate a shift in stream water composition, with DOM becoming dominated by highly coloured, complex, nitrogen-poor compounds. This material is likely more resistant to biological degradation, but more susceptible to photochemical degradation. Changes in DOM stoichiometry could lead to intensified nitrogen and/or phosphorus limitation in surface waters, while increased colour/DOC ratios could intensify light-limitation of primary production beyond that expected from DOC increases alone. We observed increases in organic matter associated metals (iron 117%, organically complexed aluminium 85%) that exceeded the increase in DOC, consistent with their increased mobilisation by more aromatic organic matter. All observed changes are consistent with recovery from acidification being the primary driver of change, implying that past acidification, and ongoing recovery, have profoundly affected terrestrial and aquatic biogeochemistry, ecology and the carbon cycle.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1139 - 1157"},"PeriodicalIF":3.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01166-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced accrual of mineral-associated organic matter after two years of enhanced rock weathering in cropland soils, though no net losses of soil organic carbon 农田土壤岩石风化增强两年后,与矿物相关的有机物积累减少,但土壤有机碳没有净损失
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-23 DOI: 10.1007/s10533-024-01160-0
Noah W. Sokol, Jaeeun Sohng, Kimber Moreland, Eric Slessarev, Heath Goertzen, Radomir Schmidt, Sandipan Samaddar, Iris Holzer, Maya Almaraz, Emily Geoghegan, Benjamin Houlton, Isabel Montañez, Jennifer Pett-Ridge, Kate Scow
{"title":"Reduced accrual of mineral-associated organic matter after two years of enhanced rock weathering in cropland soils, though no net losses of soil organic carbon","authors":"Noah W. Sokol,&nbsp;Jaeeun Sohng,&nbsp;Kimber Moreland,&nbsp;Eric Slessarev,&nbsp;Heath Goertzen,&nbsp;Radomir Schmidt,&nbsp;Sandipan Samaddar,&nbsp;Iris Holzer,&nbsp;Maya Almaraz,&nbsp;Emily Geoghegan,&nbsp;Benjamin Houlton,&nbsp;Isabel Montañez,&nbsp;Jennifer Pett-Ridge,&nbsp;Kate Scow","doi":"10.1007/s10533-024-01160-0","DOIUrl":"10.1007/s10533-024-01160-0","url":null,"abstract":"<div><p>Enhanced rock weathering (ERW), the application of crushed silicate rock to soil, can remove atmospheric carbon dioxide by converting it to (bi) carbonate ions or solid carbonate minerals. However, few studies have empirically evaluated ERW in field settings. A critical question remains as to whether additions of crushed rock might positively or negatively affect soil organic matter (SOM)—Earth’s largest terrestrial organic carbon (C) pool and a massive reservoir of organic nitrogen (N). Here, in three irrigated cropland field trials in California, USA, we investigated the effect of crushed meta-basalt rock additions on different pools of soil organic carbon and nitrogen (i.e., mineral-associated organic matter, MAOM, and particulate organic matter, POM), active microbial biomass, and microbial community composition. After 2 years of crushed rock additions, MAOM stocks were lower in the upper surface soil (0–10 cm) of plots with crushed rock compared to unamended control plots. At the 2 sites where baseline pre-treatment data were available, neither total SOC nor SON decreased over the 2 years of study in plots with crushed rock or unamended control plots. However, the accrual rate of MAOM-C and MAOM-N at 0–10 cm was lower in plots with crushed rock vs. unamended controls. Before ERW is deployed at large scales, our results suggest that field trials should assess the effects of crushed rock on SOM pools, especially over multi-year time scales and in different environmental contexts, to accurately assess changes in net C and understand the mechanisms driving interactions between ERW and SOM cycling.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"989 - 1005"},"PeriodicalIF":3.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01160-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the long-term impact of a cadmium pollution accident on microbial communities in river ecosystems 探索镉污染事故对河流生态系统微生物群落的长期影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-13 DOI: 10.1007/s10533-024-01150-2
Min Wang, Yuannan Wang, Yanli Wu, Qianli Ma, Jilin Huang, Tao He, Shan Huang, Chen Chen
{"title":"Exploring the long-term impact of a cadmium pollution accident on microbial communities in river ecosystems","authors":"Min Wang,&nbsp;Yuannan Wang,&nbsp;Yanli Wu,&nbsp;Qianli Ma,&nbsp;Jilin Huang,&nbsp;Tao He,&nbsp;Shan Huang,&nbsp;Chen Chen","doi":"10.1007/s10533-024-01150-2","DOIUrl":"10.1007/s10533-024-01150-2","url":null,"abstract":"<div><p>The large leakage accidents of heavy metals from industrial facilities pose a serious environmental problem; however, not enough studies have been conducted to assess the long-term ecological risk associated with such accidents. This study evaluated changes in the bacterial communities within river sediment and identified the key functional microorganisms responding to the 2012 cadmium contamination incident in the Long River, Guangxi Province, China. Results revealed that after a prolonged period of pollution accidents, cadmium pollution still had a discernible effect on the bacterial communities of the river sediment. In comparison to the control site (S1), the bacterial α-diversity in sediments from the accident area (S3) and its downstream (S5) showed a significant increase following the incident. In the control site, <i>Burkholderiaceae</i> was dominant, while in S3 and S5, <i>Pedosphaeraceae</i>, <i>Nitrosomonadaceae</i>, <i>Nitrospiraceae</i> and <i>Geobacteraceae</i> were significantly increased. Sulfur bacteria were found to be more responsive to this cadmium contamination than other bacteria. At site S3, the abundances of <i>Sulfuricurvum</i>, <i>Sulfurifustis</i>, <i>Thioalkalispira</i>, <i>Desulfobacteraceae</i> and <i>Desulfarculaceae</i> were hundreds of times higher than at site S1, indicating an intensification of sulfur cycling processes. The functional prediction implied that cadmium pollution may promote methane oxidation coupled with sulfate reduction reactions and altered the processes of nitrification and denitrification. Environmental factors influencing the microbial community included the levels of metals (cadmium, arsenic, iron) in sediment, as well as other sediment characteristics like temperature and electrical conductivity. These findings contribute to our understanding of the long-term ecological consequences of environmental pollution in river ecosystems.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1123 - 1137"},"PeriodicalIF":3.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01150-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotic regulation of nitrogen gas emissions in temperate agriculture 温带农业氮气排放的生物调节
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-12 DOI: 10.1007/s10533-024-01157-9
Maya Almaraz, Rebecca Ryals, Peter Groffman, Stephen Porder
{"title":"Biotic regulation of nitrogen gas emissions in temperate agriculture","authors":"Maya Almaraz,&nbsp;Rebecca Ryals,&nbsp;Peter Groffman,&nbsp;Stephen Porder","doi":"10.1007/s10533-024-01157-9","DOIUrl":"10.1007/s10533-024-01157-9","url":null,"abstract":"<div><p>It is generally assumed that fertilizer addition is the prime driver of nitrogen (N) gas loss from modern cropping systems. This assumption has its basis in observations of nitrous oxide (N<sub>2</sub>O, an important greenhouse gas) emissions, and is contrary to theory from unmanaged ecosystems, where N losses are controlled by plant physiological influence on the soil environment. However, dinitrogen (N<sub>2</sub>) emissions are likely a major N loss pathway in both managed and unmanaged ecosystems, but these emissions are very difficult to measure. We directly measured N<sub>2</sub> and N<sub>2</sub>O emissions from two temperate agricultural systems over the course of the growing season to test when total N gas losses are highest. We hypothesized that N<sub>2</sub> emissions mirror those of N<sub>2</sub>O, with the largest flux immediately after fertilization, early in the growing season. Instead, we found that N<sub>2</sub> emissions were highest at the end of the growing season, and were most strongly correlated with soil moisture, which increased after plant senescence. Dinitrogen emissions were an order of magnitude larger than N<sub>2</sub>O. Thus, while N<sub>2</sub>O emissions were highest following fertilization, overall N gas loss was greatest at the end of the growing season. These data suggest that total N gas losses are high and have different temporal patterns from N<sub>2</sub>O fluxes. Understanding the magnitude and controls over these losses are important for understanding and managing the N cycle of temperate agricultural systems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1079 - 1087"},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01157-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信