Thomas Middelanis, Dana Looschelders, Peter Mueller, Klaus-Holger Knorr
{"title":"Potential of biochar to mitigate methane production in paddy soils—application of a new incubation and modelling approach","authors":"Thomas Middelanis, Dana Looschelders, Peter Mueller, Klaus-Holger Knorr","doi":"10.1007/s10533-024-01200-9","DOIUrl":null,"url":null,"abstract":"<div><p>Paddy soils are a significant source of methane (CH<sub>4</sub>) affecting the global climate. Therefore, it is important to investigate both emission mitigation strategies and the underlying biogeochemical processes. The application of biochar into paddy soils has emerged as a promising measure to mitigate CH<sub>4</sub> emissions. However, it has not yet been clarified why such effects are usually weaker in field studies than in laboratory incubations and which properties of biochar specifically decrease the production of CH<sub>4</sub>. We conducted two incubation experiments, one with 1.5% addition of untreated biochars and one with same amounts, but pH-levelled, rinsed biochars. According to the common experimental design of existing incubation studies (experiment 1) biochar addition induced a mean soil pH increase of 0.28 after anaerobic incubation compared to the contro. In these treatments, biochar significantly extended the pre-methanogenic stage (mean 24.23%). However, this effect was weakened or even reversed when pH-levelled, rinsed biochars were amended in experiment 2, which was intended to mimic the persistent long-term effects in the field. This indicated that the provision of electron accepting capacities to suppress methanogenesis may be less important than previously thought. The addition of biochar significantly lowered CH<sub>4</sub> production rates <i>m</i> in both experiments with no significant influence of the pH (mean 25.89%), though. Our study demonstrated that incubation studies on CH<sub>4</sub> production in paddy soils can be improved by separating the pre-methanogenic and the methanogenic stage. This facilitates future research to compare characteristics of biochar, but also combinations of measures to optimise CH<sub>4</sub> mitigation strategies.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01200-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01200-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Paddy soils are a significant source of methane (CH4) affecting the global climate. Therefore, it is important to investigate both emission mitigation strategies and the underlying biogeochemical processes. The application of biochar into paddy soils has emerged as a promising measure to mitigate CH4 emissions. However, it has not yet been clarified why such effects are usually weaker in field studies than in laboratory incubations and which properties of biochar specifically decrease the production of CH4. We conducted two incubation experiments, one with 1.5% addition of untreated biochars and one with same amounts, but pH-levelled, rinsed biochars. According to the common experimental design of existing incubation studies (experiment 1) biochar addition induced a mean soil pH increase of 0.28 after anaerobic incubation compared to the contro. In these treatments, biochar significantly extended the pre-methanogenic stage (mean 24.23%). However, this effect was weakened or even reversed when pH-levelled, rinsed biochars were amended in experiment 2, which was intended to mimic the persistent long-term effects in the field. This indicated that the provision of electron accepting capacities to suppress methanogenesis may be less important than previously thought. The addition of biochar significantly lowered CH4 production rates m in both experiments with no significant influence of the pH (mean 25.89%), though. Our study demonstrated that incubation studies on CH4 production in paddy soils can be improved by separating the pre-methanogenic and the methanogenic stage. This facilitates future research to compare characteristics of biochar, but also combinations of measures to optimise CH4 mitigation strategies.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.