Biogeochemistry最新文献

筛选
英文 中文
Contribution of marine macrophytes to pCO2 and DOC variations in human-impacted coastal waters 海洋大型藻类对人类影响的沿海水域 pCO2 和 DOC 变化的贡献
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-05-04 DOI: 10.1007/s10533-024-01140-4
Kenta Watanabe, Tatsuki Tokoro, Hirotada Moki, Tomohiro Kuwae
{"title":"Contribution of marine macrophytes to pCO2 and DOC variations in human-impacted coastal waters","authors":"Kenta Watanabe,&nbsp;Tatsuki Tokoro,&nbsp;Hirotada Moki,&nbsp;Tomohiro Kuwae","doi":"10.1007/s10533-024-01140-4","DOIUrl":"10.1007/s10533-024-01140-4","url":null,"abstract":"<div><p>Carbon cycles in coastal waters are highly sensitive to human activities and play important roles in global carbon budgets. CO<sub>2</sub> sink–source behavior is regulated by spatiotemporal variations in net biological productivity, but the contribution of macrophyte habitats including macroalgae aquaculture to atmospheric CO<sub>2</sub> removal has not been well quantified. We investigated the variations in the carbonate system and dissolved organic carbon (DOC) in human-impacted macrophyte habitats and analyzed the biogeochemical drivers for the variations of these processes. Cultivated macroalgal metabolism (photosynthesis, respiration, calcification, and DOC release) was quantified by in situ field-bag experiments. Cultivated macroalgae took up dissolved inorganic carbon (DIC) (16.2–439 mmol-C m<sup>−2</sup> day<sup>−1</sup>) and released DOC (1.2–146 mmol-C m<sup>−2</sup> day<sup>−1</sup>). We estimated that seagrass beds and macroalgae farming contributed 0.8 and 0.4 mmol-C m<sup>−2</sup> day<sup>−1</sup> of the in situ total CO<sub>2</sub> removal (5.7 and 6.7 mmol-C m<sup>−2</sup> day<sup>−1</sup>, respectively) during their growing period in a semi-enclosed embayment but efficient water exchange (i.e., short residence time) in an open coastal area precluded detection of the contribution of macrophyte habitats to the CO<sub>2</sub> removal. Although hydrological processes, biological metabolism, and organic carbon storage processes would contribute to the net CO<sub>2</sub> sink–source behavior, our analyses distinguished the contribution of macrophytes from other factors. Our findings imply that macroalgae farming, in addition to restoring and creating macrophyte habitats, has potential for atmospheric CO<sub>2</sub> removal.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 6","pages":"831 - 848"},"PeriodicalIF":3.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01140-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Has nitrogen availability decreased over much of the land surface in the past century? A model-based analysis 上个世纪大部分陆地表面的氮供应量是否有所下降?基于模型的分析
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-05-03 DOI: 10.1007/s10533-024-01146-y
Peter M. Vitousek, Xiaoyu Cen, Peter M. Groffman
{"title":"Has nitrogen availability decreased over much of the land surface in the past century? A model-based analysis","authors":"Peter M. Vitousek,&nbsp;Xiaoyu Cen,&nbsp;Peter M. Groffman","doi":"10.1007/s10533-024-01146-y","DOIUrl":"10.1007/s10533-024-01146-y","url":null,"abstract":"<div><p>A recent publication (Mason et al. in Science 376:261, 2022a) suggested that nitrogen (N) availability has declined as a consequence of multiple ongoing components of anthropogenic global change. This suggestion is controversial, because human alteration of the global N cycle is substantial and has driven much-increased fixation of N globally. We used a simple model that has been validated across a climate gradient in Hawai ‘i to test the possibility of a widespread decline in N availability, the evidence supporting it, and the possible mechanisms underlying it. This analysis showed that a decrease in δ<sup>15</sup>N is not sufficient evidence for a decline in N availability, because δ<sup>15</sup>N in ecosystems reflects both the isotope ratios in inputs of N to the ecosystem AND fractionation of N isotopes as N cycles, with enrichment of the residual N in the ecosystem caused by greater losses of N by the fractionating pathways that are more important in N-rich sites. However, there is other evidence for declining N availability that is independent of <sup>15</sup>N and that suggests a widespread decline in N availability. We evaluated whether and how components of anthropogenic global change could cause declining N availability. Earlier work had demonstrated that both increases in the variability of precipitation due to climate change and ecosystem-level disturbance could drive uncontrollable losses of N that reduce N availability and could cause persistent N limitation at equilibrium. Here we modelled climate-change-driven increases in temperature and increasing atmospheric concentrations of CO<sub>2</sub>. We show that increasing atmospheric CO<sub>2</sub> concentrations can drive non-equilibrium decreases in N availability and cause the development of N limitation, while the effects of increased temperature appear to be relatively small and short-lived. These environmental changes may cause reductions in N availability over the vast areas of Earth that are not affected by high rates of atmospheric deposition and/or N enrichment associated with urban and agricultural land use.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 6","pages":"793 - 806"},"PeriodicalIF":3.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01146-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bison and cattle grazing increase soil nitrogen cycling in a tallgrass prairie ecosystem 野牛和牛的放牧增加了高草草原生态系统的土壤氮循环
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-30 DOI: 10.1007/s10533-024-01144-0
Nicholas Vega Anguiano, Kiona M. Freeman, Janaye D. Figge, Jaide H. Hawkins, Lydia H. Zeglin
{"title":"Bison and cattle grazing increase soil nitrogen cycling in a tallgrass prairie ecosystem","authors":"Nicholas Vega Anguiano,&nbsp;Kiona M. Freeman,&nbsp;Janaye D. Figge,&nbsp;Jaide H. Hawkins,&nbsp;Lydia H. Zeglin","doi":"10.1007/s10533-024-01144-0","DOIUrl":"10.1007/s10533-024-01144-0","url":null,"abstract":"<div><p>Nitrogen (N) is a necessary element of soil fertility and a limiting nutrient in tallgrass prairie but grazers like bison and cattle can also recycle N. Bison and cattle impact the nitrogen (N) cycle by digesting forage that is consumed, and recycled back to the soil in a more available forms stimulating soil microbial N cycling activities. Yet we do not know how both grazers comparatively affect N cycling in tallgrass prairie. Thus, we investigated if bison and cattle had similar impacts on N cycling in annually burned tallgrass prairie relative to ungrazed conditions over a 3-year period (2020–2022) at the Konza Prairie Biological Station. We examined: soil pH, soil water content, mineralized N, nitrification potential, denitrification potential and extracellular enzyme assays. Interannual variability in precipitation controlled soil water and N cycling microbial activities but grazing effects had a stronger influence on N cycling. We found significant differences and increased soil pH, nitrification and denitrification potential and less N limitation in bison vs cattle grazed soils where bison grazed soils exhibited faster N cycling. Differences between the grazers may be attributed to the different management of bison and cattle as both can impact N cycling. Overall, these data provide some evidence that bison and cattle affect N cycling differently at this study site, and improve the ecological understanding of grazer impacts on N cycling dynamics within the tallgrass prairie ecosystem.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"759 - 773"},"PeriodicalIF":3.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01144-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terrestrial and marine POC export fluxes estimated by 234Th–238U disequilibrium and δ13C measurements in the East China Sea shelf 通过 234Th-238U 失衡和 δ13C 测量估算东海大陆架陆地和海洋 POC 出口通量
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-29 DOI: 10.1007/s10533-024-01136-0
Qiangqiang Zhong, Dekun Huang, Qiugui Wang, Jinzhou Du, Fule Zhang, Jing Lin, Tao Yu
{"title":"Terrestrial and marine POC export fluxes estimated by 234Th–238U disequilibrium and δ13C measurements in the East China Sea shelf","authors":"Qiangqiang Zhong,&nbsp;Dekun Huang,&nbsp;Qiugui Wang,&nbsp;Jinzhou Du,&nbsp;Fule Zhang,&nbsp;Jing Lin,&nbsp;Tao Yu","doi":"10.1007/s10533-024-01136-0","DOIUrl":"10.1007/s10533-024-01136-0","url":null,"abstract":"<div><p>The use of <sup>234</sup>Th–<sup>238</sup>U disequilibrium has been widely employed to estimate the sinking flux of particulate organic carbon (POC) from the upper sea and ocean. Here, the deficits of <sup>234</sup>Th relative to <sup>238</sup>U in the water column and the carbon isotope signature (δ<sup>13</sup>C) of POC in the East China Sea (ECS) Shelf were measured, which was used to distinguish the fraction of marine and terrestrial POC export fluxes. In the ECS Shelf, very strong deficits of <sup>234</sup>Th relative to <sup>238</sup>U were observed throughout the water column, with <sup>234</sup>Th/<sup>238</sup>U activity ratios ranging from 0.158 ± 0.045 to 0.904 ± 0.068 (averaging 0.426 ± 0.159). The residence times of particle reactive radionuclide <sup>234</sup>Th (τ<sub>Th–T</sub>) in the ECS shelf water varied between 9 and 44 days, which is significantly shorter than that in the continental slope area or the basin area. This phenomenon indicates that there is a more rapid particle scavenging process in the ECS shelf water compared to the continental slope and basin upper water. By applying a two-end-member mixing model based on the δ<sup>13</sup>C, the fraction of terrestrial POC was estimated to be 0 to 74% (mean: 30 ± 22%) and the fraction of marine POC was in the range of 25% to 100% (mean: 70 ± 22%). Fluxes of marine and terrestrial POC settling to the seafloor exhibited significant spatial differences among different stations, ranging from 11 to 129 mmol C/m<sup>2</sup>/day and from 2.6 to 38 mmol C/m<sup>2</sup>/day, respectively. The averaged terrestrial POC fluxes in the southern and northern ECS Shelf were similar (~ 21 to 24 mmol C/m<sup>2</sup>/day), while the marine POC fluxes in the north (86 ± 37 mmol C/m<sup>2</sup>/day) were approximately four times higher than those in the south (26 ± 20 mmol C/m<sup>2</sup>/day). Interestingly, the estimated export flux of both marine and terrestrial POC were approximately one order of magnitude higher than the previously reported burial fluxes of POC (ranging from 1.1 ± 0.1 to 11.4 ± 1.1 mmol C/m<sup>2</sup>/day) in the underlying bottom sediments, indicating that the majority (&gt; 90%) of both terrestrial and marine POC exported from the upper water column are degraded in the sediments of the ECS Shelf. This “carbon missing” phenomenon can greatly be attributed to rapid decomposition by other processes (including microbial reworking, cross-shelf transport, and possible consumption by benthic organisms). Our findings highlight the dynamic nature of carbon cycling in the continental shelf and the need for further research to understand these processes and improve carbon budget assessments.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 6","pages":"807 - 827"},"PeriodicalIF":3.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01136-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subsidy-stress responses of ecosystem functions along experimental freshwater salinity gradients 实验性淡水盐度梯度生态系统功能的补贴-压力反应
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-26 DOI: 10.1007/s10533-024-01131-5
Stephen E. DeVilbiss, Brian D. Badgley, Erin R. Hotchkiss, Meredith K. Steele
{"title":"Subsidy-stress responses of ecosystem functions along experimental freshwater salinity gradients","authors":"Stephen E. DeVilbiss,&nbsp;Brian D. Badgley,&nbsp;Erin R. Hotchkiss,&nbsp;Meredith K. Steele","doi":"10.1007/s10533-024-01131-5","DOIUrl":"10.1007/s10533-024-01131-5","url":null,"abstract":"<div><p>Human activity is increasing salt concentrations in freshwaters worldwide, but effects of freshwater salinity gradients on biogeochemical cycling are less understood than in saline, brackish, or marine environments. Using controlled microcosm experiments, we characterized (1) short-term (one to five days) biogeochemical responses and (2) water column metabolism along a freshwater salinity gradient of multiple salt types. After one day, microcosms were oxic (4.48–7.40 mg O<sub>2</sub> L<sup>−1</sup>) but became hypoxic (1.20–3.31 mg L<sup>−1</sup>) by day five. After one day in oxic conditions, microbial respiration in magnesium-, sodium-, and sea salt-based salinity treatments showed a subsidy-stress response, with respiration increasing by over 100% as salinity increased from 30 to 350–800 µS cm<sup>−1</sup>. Conversely, respiration consistently increased along a calcium-based salinity gradient, peaking at 1500 µS cm<sup>−1</sup>. By day five, an inverse subsidy-stress response was observed with elevated respiration at upper or lower ends of the gradient except for the magnesium treatment, which had the lowest respiration at the highest salinity. Calcium- and magnesium-based salinity treatments also caused considerable changes in phosphorus concentrations and C:P and N:P. In a separate experiment, microbial respiration and water column primary production also displayed subsidy-stress responses, but imbalances in effect sizes caused consistently declining net community production with increasing salinity. Collectively, our results establish that short-term exposure to different salt ion concentrations can enhance freshwater biogeochemical cycling at relatively low concentrations and alter resource stoichiometry. Furthermore, the nature of effects of freshwater salinization may also change with oxygen availability.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"743 - 757"},"PeriodicalIF":3.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01131-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of methane emissions from northwestern Gulf of Mexico subtropical seagrass meadows 墨西哥湾西北部亚热带海草草甸的甲烷排放动态
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-23 DOI: 10.1007/s10533-024-01138-y
Hao Yu, Richard Coffin, Hannah Organ
{"title":"Dynamics of methane emissions from northwestern Gulf of Mexico subtropical seagrass meadows","authors":"Hao Yu,&nbsp;Richard Coffin,&nbsp;Hannah Organ","doi":"10.1007/s10533-024-01138-y","DOIUrl":"10.1007/s10533-024-01138-y","url":null,"abstract":"<div><p>While seagrass meadows are perceived to be pertinent blue carbon reservoirs, they also potentially release methane (CH<sub>4</sub>) into the atmosphere. Seasonal and diurnal variations in CH<sub>4</sub> emissions from a subtropical hypersaline lagoon dominated by <i>Halodule wrightii</i> in southern Texas, USA, on the northwest coast of the Gulf of Mexico were investigated. Dissolved CH<sub>4</sub> concentrations decreased in the daytime and increased overnight during the diel observation period, which could be explained by photosynthesis and respiration of seagrasses. Photosynthetic oxygen was found to significantly reduce CH<sub>4</sub> emissions from seagrass sediment. Diffusive transport contributed slightly to the release of CH<sub>4</sub> from the sediment to the water column, while plant mediation might be the primary mechanism. The diffusive CH<sub>4</sub> flux at the sea-air interface was 12.3–816.2 µmol/m<sup>2</sup> d, over the range of the sea-air fluxes previously reported from other seagrass meadows. This was related to relatively higher dissolved CH<sub>4</sub> concentrations (11.6–258.2 nmol/L) in a mostly closed lagoon with restricted water exchange. This study emphasizes seagrass meadows in the subtropical hypersaline lagoon as a source of atmospheric CH<sub>4</sub>, providing insights into the interactions between seagrass ecosystems and methane dynamics, with potential implications for seagrass meadow management and conservation efforts.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"723 - 741"},"PeriodicalIF":3.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01138-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rewet without regret? Nutrient dynamics in fen peat exposed to different rewetting degrees 复湿无悔?暴露于不同复湿程度的沼泽泥炭中的营养动态
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-20 DOI: 10.1007/s10533-024-01139-x
Annick van der Laan, Jerry van Dijk, Karin T. Rebel, Martin J. Wassen
{"title":"Rewet without regret? Nutrient dynamics in fen peat exposed to different rewetting degrees","authors":"Annick van der Laan,&nbsp;Jerry van Dijk,&nbsp;Karin T. Rebel,&nbsp;Martin J. Wassen","doi":"10.1007/s10533-024-01139-x","DOIUrl":"10.1007/s10533-024-01139-x","url":null,"abstract":"<div><p>All over the world, peatlands have been drained, often for agricultural purposes, resulting in CO<sub>2</sub> emissions, soil subsidence and biodiversity loss. To combat these negative effects, drained peatlands are being rewetted, but knowledge of the effects of rewetting on peat biogeochemistry is still incomplete, especially since a variety of rewetting methods and rewetting degrees exists. We conducted a mesocosm experiment in which we exposed 100 intact agricultural fen peat cores (80 cm, 20 cm Ø) to five different water levels (0, 20, 40, 60 cm and variable—surface), two nutrient application levels to mimic continued agricultural use, and two water origins. Over an eight-month period, we harvested above-ground plant biomass five times and sampled pore water at two depths each month. Samples were analysed for nutrients. Our results show increased phosphate and ammonium availability upon fully rewetting (0 cm—surface) and less so under partially rewetted circumstances (20 cm—surface). Above-ground biomass was strongly affected by nutrient application, especially in the high water level treatments. Vegetation was primarily N-limited, and N in the vegetation decreased with increasing water levels, indicating stronger nitrogen limitation upon rewetting. We conclude that nature restoration under fully rewetted conditions will likely be challenging as a result of the large release of nutrients from the system which may also affect surrounding nature areas. Furthermore, we conclude that partial rewetting combined with low-intensity agricultural use can be a solution to slow down the adverse effects of drainage, although this will lead to decreased agricultural production.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"705 - 721"},"PeriodicalIF":3.9,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01139-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drought-induced turnover of soil microbial biomass increases nutrient subsidies for the reproduction of tropical forest 干旱引发的土壤微生物生物量更替增加了热带森林繁衍所需的养分补贴
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-17 DOI: 10.1007/s10533-024-01137-z
Kazumichi Fujii, Chie Hayakawa,  Sukartiningsih
{"title":"Drought-induced turnover of soil microbial biomass increases nutrient subsidies for the reproduction of tropical forest","authors":"Kazumichi Fujii,&nbsp;Chie Hayakawa,&nbsp; Sukartiningsih","doi":"10.1007/s10533-024-01137-z","DOIUrl":"10.1007/s10533-024-01137-z","url":null,"abstract":"<div><p>El Niño-induced drought, which is intensified by climate change, can have huge impacts on soil microbial biomass and plant productivity in tropical forests. We tested whether drought-induced turnover of soil microbial biomass can be a potential source of phosphorus (P), the limiting nutrient, for the reproduction of tropical forest trees (mast fruiting). We measured the seasonal variations in soil microbial biomass P and soil solution P concentrations including the periods before and after drought in a dipterocarp forest in Indonesia. Drought resulted in a decrease in soil microbial biomass C, N, and P, followed by a recovery after re-wetting. There was a sharp peak of soil solution P concentrations during the drought. The significant difference between soil microbial biomass P before and after drought amounted to 2.0 kg P ha<sup>−1</sup>. The potential P release from microbial turnover is not negligible compared to the additional P demand for fruit production (1.0 kg P ha<sup>−1</sup>) as well as the annual demand for litter production (2.5 kg P ha<sup>−1</sup> year<sup>−1</sup>). In addition to the accumulation of nutrients for several non-fruiting years and their re-distribution in tree biomass, drought-induced microbial turnover can be nutrient subsidies for dipterocarp reproduction in highly-weathered soils.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"695 - 703"},"PeriodicalIF":3.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01137-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Disentangling effects of multiple agricultural stressors on benthic and hyporheic nitrate uptake 更正:厘清多种农业压力因素对底栖生物和下垫面硝酸盐吸收的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-17 DOI: 10.1007/s10533-024-01142-2
Julia Pasqualini, Daniel Graeber, Alexander Bartusch, Steffen Kümmel, Zulma Lorena Duran Hernandez, Niculina Musat, Nergui Sunjidmaa, Markus Weitere, Mario Brauns
{"title":"Correction to: Disentangling effects of multiple agricultural stressors on benthic and hyporheic nitrate uptake","authors":"Julia Pasqualini,&nbsp;Daniel Graeber,&nbsp;Alexander Bartusch,&nbsp;Steffen Kümmel,&nbsp;Zulma Lorena Duran Hernandez,&nbsp;Niculina Musat,&nbsp;Nergui Sunjidmaa,&nbsp;Markus Weitere,&nbsp;Mario Brauns","doi":"10.1007/s10533-024-01142-2","DOIUrl":"10.1007/s10533-024-01142-2","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"775 - 776"},"PeriodicalIF":3.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01142-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wildfire effects on the fate of deposited nitrogen in a boreal larch forest 野火对北方落叶松林中沉积氮归宿的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-04-11 DOI: 10.1007/s10533-024-01135-1
Weili Liu, Jiaxing Zu, B Liu, Lin Qi, Wei Huang, Yunting Fang, Jian Yang
{"title":"Wildfire effects on the fate of deposited nitrogen in a boreal larch forest","authors":"Weili Liu,&nbsp;Jiaxing Zu,&nbsp;B Liu,&nbsp;Lin Qi,&nbsp;Wei Huang,&nbsp;Yunting Fang,&nbsp;Jian Yang","doi":"10.1007/s10533-024-01135-1","DOIUrl":"10.1007/s10533-024-01135-1","url":null,"abstract":"<div><p>The effects of nitrogen (N) deposition on forests largely depend on the ecosystem N status and the fates of deposited N. Boreal forests are typically N-limited ecosystems and are considered to be more efficient in retaining deposited N relative to temperate and tropical forests. As a primary disturbance in boreal forests, wildfires may alleviate N limitation in the burned ecosystem and increase mineralization, resulting in the altered outcomes of the N deposition. In order to explore the effects of a severe wildfire on the retention of deposited N, we investigated the fates of newly deposited N in burned and unburned boreal larch forests by applying <sup>15</sup>NH<sub>4</sub>NO<sub>3</sub> tracers to the forest floors. Results showed that total ecosystem retention for the deposited N was 60% in the forest recovering from a severe wildfire burned five years ago, significantly lower than in the unburned mature forest (89%). The difference was mainly attributed to the substantially lower retention in vegetation (8.3%) in the burned site than in the unburned forest (32.4%), as tracer recoveries in soil were similar (51.2 and 56.6%, respectively). Although most <sup>15</sup>N tracer was immobilized in organic soil in both burned and unburned forests (33 and 47%, respectively), a noticeably higher amount of <sup>15</sup>N was found in mineral soil in the burned forest (19%) than in the unburned forest (10%), suggesting mineral soil as a significant sink for N deposition in the burned forest. A higher total <sup>15</sup>N retention in the unburned forest implies that more new N input may stimulate C sequestration and promote the productivity of the Eurasian boreal forest under the background of atmospheric N deposition. However, a considerable amount of deposited N may be lost from the disturbed boreal larch forest ecosystem after a severe wildfire.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 5","pages":"681 - 693"},"PeriodicalIF":3.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01135-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信