Biogeochemistry最新文献

筛选
英文 中文
Disentangling the effects of temperature and reactive minerals on soil carbon stocks across a thermal gradient in a temperate native forest ecosystem 在温带原生林生态系统中,跨越热梯度,厘清温度和活性矿物质对土壤碳储量的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-03-10 DOI: 10.1007/s10533-024-01125-3
Idri Hastuty Siregar, Marta Camps-Arbestain, Gabor Kereszturi, Alan Palmer, Miko U. F. Kirschbaum, Tao Wang
{"title":"Disentangling the effects of temperature and reactive minerals on soil carbon stocks across a thermal gradient in a temperate native forest ecosystem","authors":"Idri Hastuty Siregar,&nbsp;Marta Camps-Arbestain,&nbsp;Gabor Kereszturi,&nbsp;Alan Palmer,&nbsp;Miko U. F. Kirschbaum,&nbsp;Tao Wang","doi":"10.1007/s10533-024-01125-3","DOIUrl":"10.1007/s10533-024-01125-3","url":null,"abstract":"<div><p>Effects of global warming on soil organic carbon (C) can be investigated by comparing sites experiencing different temperatures. However, observations can be affected by covariance of temperature with other environmental properties. Here, we studied a thermal gradient in forest soils derived from volcanic materials on Mount Taranaki (New Zealand) to disentangle the effects of temperature and reactive minerals on soil organic C quantity and composition. We collected soils at four depths and four elevations with mean annual temperatures ranging from 7.3 to 10.5 °C. Soil C stocks were not significantly different across sites (average 162 MgC ha<sup>−1</sup> to 85 cm depth,<i> P</i> &gt; .05). Neither aluminium (Al)-complexed C, nor mineral-associated C changed significantly (<i>P</i> &gt; .05) with temperature. The molecular characterisation of soil organic matter showed that plant-derived C declined with increasing temperature, while microbial-processed C increased. Accompanying these changes, soil short-range order (SRO) constituents (including allophane) generally increased with temperature. Results from structural equation modelling revealed that, although a warmer temperature tended to accelerate soil organic C decomposition as inferred from molecular fingerprints, it also exerted a positive effect on soil total C presumably by enhancing plant C input. Despite a close linkage between mineral-associated C and soil organic C, the increased abundance of reactive minerals at 30–85 cm depth with temperature did not increase soil organic C concentration at that depth. We therefore propose that fresh C inputs, rather than reactive minerals, mediate soil C responses to temperature across the thermal gradient of volcanic soils under humid-temperate climatic conditions.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 3","pages":"251 - 267"},"PeriodicalIF":3.9,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01125-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rivers and tidal flats as sources of dissolved organic matter and trace metals in the German Bight (North Sea) 作为德国湾(北海)溶解有机物和痕量金属来源的河流和滩涂
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-03-09 DOI: 10.1007/s10533-024-01117-3
Linn G. Speidel, Roger Carvalho da Silva, Melanie Beck, Olaf Dellwig, Jochen Wollschläger, Thorsten Dittmar, Michael Seidel
{"title":"Rivers and tidal flats as sources of dissolved organic matter and trace metals in the German Bight (North Sea)","authors":"Linn G. Speidel,&nbsp;Roger Carvalho da Silva,&nbsp;Melanie Beck,&nbsp;Olaf Dellwig,&nbsp;Jochen Wollschläger,&nbsp;Thorsten Dittmar,&nbsp;Michael Seidel","doi":"10.1007/s10533-024-01117-3","DOIUrl":"10.1007/s10533-024-01117-3","url":null,"abstract":"<div><p>The German Bight in the southern North Sea receives nutrients, dissolved organic matter (DOM), and trace metals from rivers, porewater reflux, and porewater outwelling. We studied the marine, riverine, and porewater sources analyzing molecular transformations of solid-phase extracted (SPE) DOM in the German Bight. We applied a combination of ultrahigh-resolution mass spectrometry (FT-ICR-MS) with quantitative data of dissolved organic sulfur (DOS), dissolved black carbon (DBC), dissolved trace metals (Ba, Co, Gd, Mo, Mn, W), and nutrients (nitrite, nitrate, phosphate, silicate). While aromatic DOM and DBC mainly originated from the rivers, nitrogen-containing, more saturated DOM was enriched offshore suggesting greater contributions of marine (algal) sources. Except for dissolved Mo, rivers were the primary source of trace metals and nutrients. However, tidal flats contributed to dissolved nutrient (e.g., dissolved phosphate), trace metal and DOS inventories of the southern North Sea. The input of DOS from intertidal flats was identified by the molecular index derived from sulfidic porewaters (I<sub>SuP</sub>), non-conservative behavior of elemental sulfur-to-carbon ratio and sulfur content of molecular formulae (from FT-ICR-MS). Dissolved Mn and Si were removed in the German Bight, likely due to precipitation as Mn(hydr)oxides and biological uptake, respectively. Preliminary estimates suggest that DOS from porewater outwelling is approximately four times higher than DOS discharged by the three main rivers in the region. Our study therefore highlights the need to consider porewater discharge in addition to riverine sources to comprehensively assess elemental budgets within the complex interplay and transformations of DOM, nutrients, and trace metals in coastal ecosystems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 3","pages":"225 - 250"},"PeriodicalIF":3.9,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01117-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permafrost degradation and its consequences for carbon storage in soils of Interior Alaska 阿拉斯加内陆土壤的永久冻土退化及其对碳储存的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-03-09 DOI: 10.1007/s10533-024-01132-4
Patrick Liebmann, Jiří Bárta, Cordula Vogel, Tim Urich, Alexander Kholodov, Milan Varsadiya, Ole Mewes, Stefan Dultz, Muhammad Waqas, Haitao Wang, Olga Shibistova, Georg Guggenberger
{"title":"Permafrost degradation and its consequences for carbon storage in soils of Interior Alaska","authors":"Patrick Liebmann,&nbsp;Jiří Bárta,&nbsp;Cordula Vogel,&nbsp;Tim Urich,&nbsp;Alexander Kholodov,&nbsp;Milan Varsadiya,&nbsp;Ole Mewes,&nbsp;Stefan Dultz,&nbsp;Muhammad Waqas,&nbsp;Haitao Wang,&nbsp;Olga Shibistova,&nbsp;Georg Guggenberger","doi":"10.1007/s10533-024-01132-4","DOIUrl":"10.1007/s10533-024-01132-4","url":null,"abstract":"<div><p>Permafrost soils in the northern hemisphere are known to harbor large amounts of soil organic matter (SOM). Global climate warming endangers this stable soil organic carbon (SOC) pool by triggering permafrost thaw and deepening the active layer, while at the same time progressing soil formation. But depending, e.g., on ice content or drainage, conditions in the degraded permafrost can range from water-saturated/anoxic to dry/oxic, with concomitant shifts in SOM stabilizing mechanisms. In this field study in Interior Alaska, we investigated two sites featuring degraded permafrost, one water-saturated and the other well-drained, alongside a third site with intact permafrost. Soil aggregate- and density fractions highlighted that permafrost thaw promoted macroaggregate formation, amplified by the incorporation of particulate organic matter, in topsoils of both degradation sites, thus potentially counteracting a decrease in topsoil SOC induced by the permafrost thawing. However, the subsoils were found to store notably less SOC than the intact permafrost in all fractions of both degradation sites. Our investigations revealed up to net 75% smaller SOC storage in the upper 100 cm of degraded permafrost soils as compared to the intact one, predominantly related to the subsoils, while differences between soils of wet and dry degraded landscapes were minor. This study provides evidence that the consideration of different permafrost degradation landscapes and the employment of soil fractionation techniques is a useful combination to investigate soil development and SOM stabilization processes in this sensitive ecosystem.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 3","pages":"199 - 223"},"PeriodicalIF":3.9,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01132-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hourly methane and carbon dioxide fluxes from temperate ponds 温带池塘每小时甲烷和二氧化碳通量
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-03-08 DOI: 10.1007/s10533-024-01124-4
Jonas Stage Sø, Kenneth Thorø Martinsen, Theis Kragh, Kaj Sand-Jensen
{"title":"Hourly methane and carbon dioxide fluxes from temperate ponds","authors":"Jonas Stage Sø,&nbsp;Kenneth Thorø Martinsen,&nbsp;Theis Kragh,&nbsp;Kaj Sand-Jensen","doi":"10.1007/s10533-024-01124-4","DOIUrl":"10.1007/s10533-024-01124-4","url":null,"abstract":"<div><p>Ponds are regarded as greenhouse gas (GHG) emission hot spots, but how hot are they? We examined this question by measuring methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) fluxes in six forest and open land ponds on grasslands in Denmark during summer and winter. We used floating chambers with do-it-yourself sensors and automated headspace venting, allowing for 7404 hourly measurements. We found highly variable gas fluxes within ponds and between seasons and pond types. Ebullitive CH<sub>4</sub> fluxes were more variable than diffusive CH<sub>4</sub> fluxes. Ebullition was absent when total CH<sub>4</sub> fluxes were lowest (15 µmol m<sup>−2</sup> h<sup>−1</sup>), dominant (&gt; 90%) at the highest fluxes (&gt; 400 µmol m<sup>−2</sup> h<sup>−1</sup>), and increased with water temperature. In summer, a minor daily increase in diffusive fluxes was found on days with high wind speed, while CH<sub>4</sub> ebullition remained constant. CO<sub>2</sub> fluxes paralleled the day-night balance of photosynthesis and respiration. Mean CH<sub>4</sub> ebullition in open and forest ponds exceeded CH<sub>4</sub> diffusive fluxes 4.1 and 7.1-fold in summer (avg. 22.5 °C) and 2.3 and 2.5-fold in winter (9.6 °C), respectively. CO<sub>2</sub> emissions were higher on a molar basis than CH<sub>4</sub> emissions, both in summer and winter, while their annual global warming potentials were similar. Mean annual gas emissions from open and forest ponds (1092 and 2527 g CO<sub>2</sub>e m<sup>−2</sup> y<sup>−1</sup>) are naturally high due to extensive external input of dissolved CO<sub>2</sub> and organic carbon relative to pond area and volume.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 2","pages":"177 - 195"},"PeriodicalIF":3.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01124-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drought effects on soil greenhouse gas fluxes in a boreal and a temperate forest 干旱对北方和温带森林土壤温室气体通量的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-03-06 DOI: 10.1007/s10533-024-01126-2
L. M. Gillespie, P. Kolari, L. Kulmala, S. M. Leitner, M. Pihlatie, S. Zechmeister-Boltenstern, E. Díaz-Pinés
{"title":"Drought effects on soil greenhouse gas fluxes in a boreal and a temperate forest","authors":"L. M. Gillespie,&nbsp;P. Kolari,&nbsp;L. Kulmala,&nbsp;S. M. Leitner,&nbsp;M. Pihlatie,&nbsp;S. Zechmeister-Boltenstern,&nbsp;E. Díaz-Pinés","doi":"10.1007/s10533-024-01126-2","DOIUrl":"10.1007/s10533-024-01126-2","url":null,"abstract":"<div><p>Changing water regimes (e.g. drought) have unknown long-term consequences on the stability and resilience of soil microorganisms who determine much of the carbon and nitrogen exchange between the biosphere and atmosphere. Shifts in their activity could feedback into ongoing climate change. In this study, we explored soil drought effects on soil greenhouse gas (GHG; CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) fluxes over time in two sites: a boreal, coniferous forest in Finland (Hyytiälä) and a temperate, broadleaf forest in Austria (Rosalia). Topsoil moisture and topsoil temperature data were used to identify soil drought events, defined as when soil moisture is below the soil moisture at the permanent wilting point. Data over multiple years from automated GHG flux chambers installed on the forest floor were then analyzed using generalized additive models (GAM) to study whether GHG fluxes differed before and after drought events and whether there was an overall, multiyear temporal trend. Results showed CO<sub>2</sub> and N<sub>2</sub>O emissions to be more affected by drought and long-term trends at Hyytiälä with increased CO<sub>2</sub> emission and decreased N<sub>2</sub>O emissions both following drought and over the entire measurement period. CH<sub>4</sub> uptake increased at both sites both during non-drought periods and as an overall, multiyear trend and was predominantly affected by soil moisture dynamics. Multiyear trends also suggest an increase in soil temperature in the boreal forest and a decrease in soil moisture in the temperate forest. These findings underline forests as an important sink for CH<sub>4</sub>, possibly with an increasing rate in a future climate.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 2","pages":"155 - 175"},"PeriodicalIF":3.9,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01126-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of pockmark activity on iron cycling and mineral composition in continental shelf sediments (southern Baltic Sea) 麻子活动对大陆架沉积物(波罗的海南部)铁循环和矿物组成的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-03-02 DOI: 10.1007/s10533-024-01127-1
Stanisław Kurowski, Katarzyna Łukawska-Matuszewska, Anđela Čović, Dražan Jozić, Aleksandra Brodecka-Goluch
{"title":"Effects of pockmark activity on iron cycling and mineral composition in continental shelf sediments (southern Baltic Sea)","authors":"Stanisław Kurowski,&nbsp;Katarzyna Łukawska-Matuszewska,&nbsp;Anđela Čović,&nbsp;Dražan Jozić,&nbsp;Aleksandra Brodecka-Goluch","doi":"10.1007/s10533-024-01127-1","DOIUrl":"10.1007/s10533-024-01127-1","url":null,"abstract":"<div><p>Pockmarks are formed as a result of gas (methane) or/and groundwater outflow from the sea bottom. Methane, the second most important (after CO<sub>2</sub>) greenhouse gas, has a significant impact on biogeochemical processes in the bottom sediments by affecting the cycling of some elements, e.g. C, Fe, and S. Active pockmarks may also lead to changes in water column conditions by causing nutrients release from sediments. In the present study, we have focused on the impact of biogeochemical processes in pockmarks (methanogenesis, anaerobic methane oxidation, and groundwater seepage) on the transformation of iron (Fe) and the mineral composition of the sediment. In pore water, concentrations of hydrogen sulfide, phosphate, ammonia, sulfate, chloride, dissolved inorganic carbon, iron, and methane were analyzed. In the sediment, Fe speciation was performed using sequential extraction. The mineral composition was determined using powder X-Ray diffraction and scanning electron microscopy. The results from two pockmarks (with active gas seepage and groundwater infiltration) and two reference stations in the southern Baltic Sea show that geochemical conditions in pockmark sediments are significantly different from those in the typical muddy sea bottom. Pore water in pockmarks is characterized by lower sulfate and higher dissolved carbon concentrations as compared to areas of the seafloor where such structures are absent. This is due to the outflow of groundwater, which was confirmed by lower chloride concentration. In addition, sulfate is used to oxidize methane diffusing from deeper layers. Sediments in pockmarks are enriched in Fe(II) carbonates and depleted in Fe(III) (oxy)hydroxides, resulting from the anaerobic oxidation of methane with Fe(III) (Fe-AOM). Ferrous iron produced in large quantities during Fe-AOM is precipitated with carbonates.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 2","pages":"135 - 154"},"PeriodicalIF":3.9,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01127-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Peatlands for climate change mitigation in agriculture 社论:泥炭地缓解农业气候变化
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-02-11 DOI: 10.1007/s10533-024-01123-5
Klaus Butterbach-Bahl, Dominik Zak, Jørgen Eivind Olesen
{"title":"Editorial: Peatlands for climate change mitigation in agriculture","authors":"Klaus Butterbach-Bahl,&nbsp;Dominik Zak,&nbsp;Jørgen Eivind Olesen","doi":"10.1007/s10533-024-01123-5","DOIUrl":"10.1007/s10533-024-01123-5","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"321 - 326"},"PeriodicalIF":3.9,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01123-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of forestry drainage on surface peat stoichiometry and physical properties in boreal peatlands in Finland 林业排水对芬兰北方泥炭地表层泥炭组成和物理特性的影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-02-08 DOI: 10.1007/s10533-023-01115-x
Jukka Turunen, Jani Anttila, Anna M. Laine, Juha Ovaskainen, Matti Laatikainen, Jukka Alm, Tuula Larmola
{"title":"Impacts of forestry drainage on surface peat stoichiometry and physical properties in boreal peatlands in Finland","authors":"Jukka Turunen,&nbsp;Jani Anttila,&nbsp;Anna M. Laine,&nbsp;Juha Ovaskainen,&nbsp;Matti Laatikainen,&nbsp;Jukka Alm,&nbsp;Tuula Larmola","doi":"10.1007/s10533-023-01115-x","DOIUrl":"10.1007/s10533-023-01115-x","url":null,"abstract":"<div><p>Management of drained peatlands may pose a risk or a solution on the way towards climate change mitigation, which creates a need to evaluate the current state of forestry-drained peatlands, the magnitude of degradation processes and indicators for carbon (C) loss. Using a large dataset (778 profiles, 891 peat samples, collected between 1977 and 2017) from peatlands having different fertility classes across Finland, we investigate whether the surface peat profiles of undrained and forestry-drained peatlands differ in C:N, von Post and dry bulk density. The utility of element ratios (C:N:H stoichiometry) as site indicators for degradation were further analyzed from a subsample of 16 undrained and 30 drained peat profiles. This subsample of drained sites had carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) fluxes measured allowing us to link peat element ratios to annual C gas effluxes. Element ratios H:C, O:C and C:N and degree of unsaturation (combining C, N, H changes) were found widely valid: they captured both differences in the botanical origin of peat as well as its potential decomposition pathway (C lost via a combination of dissolved organic C and C gas loss and/or the gaseous loss predominantly as CO<sub>2</sub>). Of the stoichiometric indexes, peat H:C ratio seemed to be the best proxy for degradation following drainage, it indicated not only long-term degradation but also explained 48% of the variation in annual CO<sub>2</sub> emission. The O:C ratio positively correlated with annual CH<sub>4</sub> flux, presumably because high O:C in peat reflected the availability of easily degradable substrate for methanogenesis. The differences in C:N ratio indicated notable decomposition processes for <i>Sphagnum</i>-dominated peatlands but not in <i>Carex-</i>dominated peatlands. Degree of unsaturation showed potential for an integrative proxy for drainage-induced lowering water table and post-drainage changes in peat substrate quality.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"589 - 608"},"PeriodicalIF":3.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01115-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139705058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptation of fen peatlands to climate change: rewetting and management shift can reduce greenhouse gas emissions and offset climate warming effects 沼泽泥炭地适应气候变化:复湿和管理转变可减少温室气体排放并抵消气候变暖效应
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-02-07 DOI: 10.1007/s10533-023-01113-z
Carla Bockermann, Tim Eickenscheidt, Matthias Drösler
{"title":"Adaptation of fen peatlands to climate change: rewetting and management shift can reduce greenhouse gas emissions and offset climate warming effects","authors":"Carla Bockermann,&nbsp;Tim Eickenscheidt,&nbsp;Matthias Drösler","doi":"10.1007/s10533-023-01113-z","DOIUrl":"10.1007/s10533-023-01113-z","url":null,"abstract":"<div><p>In Germany, emissions from drained organic soils contributed approximately 53.7 Mio. t of carbon dioxide equivalents (CO<sub>2</sub>-eq) to the total national greenhouse gas (GHG) emissions in 2021. In addition to restoration measures, shifting management practices, rewetting, or using peatlands for paludiculture is expected to significantly reduce GHG emissions. The effects of climate change on these mitigation measures remains to be tested. In a 2017 experimental field study on agriculturally used grassland on organic soil, we assessed the effects of rewetting and of predicted climate warming on intensive grassland and on extensively managed sedge grassland (transplanted <i>Carex acutiformis</i> monoliths). The testing conditions of the two grassland types included drained versus rewetted conditions (annual mean water table of − 0.13 m below soil surface), ambient versus warming conditions (annual mean air temperature increase of + 0.8 to 1.3 °C; use of open top chambers), and the combination of rewetting and warming. We measured net ecosystem exchange of CO<sub>2</sub>, methane and nitrous oxide using the closed dynamic and static chamber method. Here, we report the results on the initial year of GHG measurements after transplanting adult Carex soil monoliths, including the controlled increase in water level and temperature. We observed higher N<sub>2</sub>O emissions than anticipated in all treatments. This was especially unexpected for the rewetted intensive grasslands and the Carex treatments, but largely attributable to the onset of rewetting coinciding with freeze–thaw cycles. However, this does not affect the overall outcomes on mitigation and adaptation trends. We found that warmer conditions increased total GHG emissions of the drained intensive grassland system from 48.4 to 66.9 t CO<sub>2</sub>-eq ha<sup>−1</sup> year<sup>−1</sup>. The shift in grassland management towards Carex paludiculture resulted in the largest GHG reduction, producing a net cooling effect with an uptake of 11.1 t CO<sub>2</sub>-eq ha<sup>−1</sup> year<sup>−1</sup>. Surprisingly, we found that this strong sink could be maintained under the simulated warming conditions ensuing an emission reduction potential of − 80 t CO<sub>2</sub>-eq ha<sup>−1</sup> year<sup>−1</sup>. We emphasize that the results reflect a single initial measurement year and do not imply the permanence of the observed GHG sink function over time. Our findings affirm that rewetted peatlands with adapted plant species could sustain GHG mitigation and potentially promote ecosystem resilience, even under climate warming. In a warmer world, adaptation measures for organic soils should therefore include a change in management towards paludiculture. Multi-year studies are needed to support the findings of our one-year experiment. In general, the timing of rewetting should be considered carefully in mitigation measures.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"563 - 588"},"PeriodicalIF":3.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01113-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moss removal facilitates decomposition and net nitrogen loss of monospecific and mixed-species litter in a boreal peatland 在北方泥炭地清除苔藓有助于单种和混种枯落物的分解和净氮损失
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-02-06 DOI: 10.1007/s10533-024-01116-4
Xinhou Zhang, Wei Chen, Weixiang Chen, Xianwei Wang, Rong Mao
{"title":"Moss removal facilitates decomposition and net nitrogen loss of monospecific and mixed-species litter in a boreal peatland","authors":"Xinhou Zhang,&nbsp;Wei Chen,&nbsp;Weixiang Chen,&nbsp;Xianwei Wang,&nbsp;Rong Mao","doi":"10.1007/s10533-024-01116-4","DOIUrl":"10.1007/s10533-024-01116-4","url":null,"abstract":"<div><p>Litter decomposition plays an important role in biogeochemical cycling in boreal peatlands, where mosses, especially <i>Sphagnum</i> species, are a determinant. In recent decades, these peatlands have experienced a decline in moss cover due to abrupt climate warming and atmospheric nitrogen (N) deposition. To reveal the effect of the reduction in moss cover on litter decomposition, we adopted a field living moss removal experiment (with the senesced tissues remaining) in a <i>Sphagnum</i>-dominated boreal peatland, and investigated litter mass loss and net N loss of three deciduous woody species decomposing in monocultures and mixtures over 3 years. Based on the observed and predicted mass loss and net N loss of litter mixtures, we divided litter mixing effects into additive (no significant difference), synergistic (observed value greater than predicted value), and antagonistic (observed value lower than predicted value) effects. Across 3 years of decomposition, moss removal increased litter mass loss and net N loss, irrespective of single- or mixed-species compositions. Moss removal generally changed litter mixing effects on mass loss from antagonistic to additive effects in the initial 2 years, but from synergistic to additive effects after 3 years of decomposition. Regarding net N loss of litter mixtures, moss removal often resulted in a shift from additive to synergistic effects or from antagonistic to additive effects after 2 and 3 years of decomposition. Our observations suggest that the declines in living moss cover can accelerate litter decomposition and nutrient release, and highlight that living moss loss makes litter mixture decomposition predictable by reducing non-additive effects in boreal peatlands. Given the widespread occurrence of reduced moss cover in boreal peatlands, the mechanisms explaining living moss controls on litter decomposition and N cycling should receive significant attention in further studies.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 2","pages":"121 - 133"},"PeriodicalIF":3.9,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01116-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信