BiogeochemistryPub Date : 2023-11-26DOI: 10.1007/s10533-023-01096-x
Sannimari A. Käärmelahti, Christian Fritz, Gabrielle R. Quadra, Maider Erize Gardoki, Greta Gaudig, Matthias Krebs, Ralph J. M. Temmink
{"title":"Topsoil removal for Sphagnum establishment on rewetted agricultural bogs","authors":"Sannimari A. Käärmelahti, Christian Fritz, Gabrielle R. Quadra, Maider Erize Gardoki, Greta Gaudig, Matthias Krebs, Ralph J. M. Temmink","doi":"10.1007/s10533-023-01096-x","DOIUrl":"10.1007/s10533-023-01096-x","url":null,"abstract":"<div><p>Rewetting drained agricultural peatlands aids in restoring their original ecosystem functions, including carbon storage and sustaining unique biodiversity. 30–60 cm of topsoil removal (TSR) before rewetting for <i>Sphagnum</i> establishment is a common practice to reduce nutrient concentrations and greenhouse gas emissions, and increase water conductivity. However, the topsoil is carbon-dense and preservation in situ would be favorable from a climate-mitigation perspective. The effect of reduced TSR on <i>Sphagnum</i> establishment and nutrient dynamics on degraded and rewetted raised bogs remains to be elucidated. We conducted a two-year field experiment under <i>Sphagnum</i> paludiculture management with three TSR depths: no-removal (TSR0), 5–10 cm (TSR5), and 30 cm (TSR30) removal. We tested the effects of TSR on <i>Sphagnum</i> establishment and performance, nutrient dynamics, and hotspot methane emissions. After two years, TSR5 produced similar <i>Sphagnum</i> biomass as TSR30, while vascular plant biomass was highest in TSR0. All capitula nitrogen (N > 12 mg/g) indicated N-saturation. Phosphorus (P) was not limiting (N/P < 30), but a potential potassium (K) limitation was observed in year one (N/K > 3). In TSR0, ammonium concentrations were > 150 µmol/l in year one, but decreased by 80% in year two. P-concentrations remained high (<i>c.</i> 100 µmol/l) at TSR0 and TSR5, and remained low at TSR30. TSR30 and TSR5 reduced hotspot methane emissions relative to TSR0. We conclude that all TSR practices have their own advantages and disadvantages with respect to <i>Sphagnum</i> growth, nutrient availability and vegetation development. While TSR5 may be the most suitable for paludiculture, its applicability for restoration purposes remains to be elucidated. Setting prioritized targets when selecting the optimal TSR with peatland rewetting is pivotal.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"479 - 496"},"PeriodicalIF":3.9,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01096-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138442234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-25DOI: 10.1007/s10533-023-01100-4
Jackie R. Webb, Wendy C. Quayle, Carlos Ballester, Naomi S. Wells
{"title":"Semi-arid irrigation farm dams are a small source of greenhouse gas emissions","authors":"Jackie R. Webb, Wendy C. Quayle, Carlos Ballester, Naomi S. Wells","doi":"10.1007/s10533-023-01100-4","DOIUrl":"10.1007/s10533-023-01100-4","url":null,"abstract":"<div><p>Small artificial waterbodies are larger emitters of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) than natural waterbodies. The Intergovernmental Panel on Climate Change (IPCC) recommends these waterbodies are accounted for in national emission inventories, yet data is extremely limited for irrigated landscapes. To derive a baseline of their greenhouse gas footprint, we investigated 38 irrigation farm dams in horticulture and broadacre cropping in semi-arid NSW, Australia. Dissolved CO<sub>2</sub>, CH<sub>4</sub>, and nitrous oxide (N<sub>2</sub>O) were measured in spring and summer, 2021–2022. While all dams were sources of CH<sub>4</sub> to the atmosphere, 52% of irrigation farm dams were sinks for CO<sub>2</sub> and 70% were sinks for N<sub>2</sub>O. Relationships in the linear mixed effect models indicate that CO<sub>2</sub> concentrations were primarily driven by dissolved oxygen (DO), ammonium, and sediment carbon content, while N<sub>2</sub>O concentration was best explained by an interaction between DO and ammonium. Methane concentrations did not display any relationship with typical biological variables and instead were related to soil salinity, trophic status, and size. Carbon dioxide-equivalent emissions were highest in small (< 0.001 km<sup>2</sup>) dams (305 g CO<sub>2</sub>-eq m<sup>−2</sup> season<sup>−1</sup>) and in those used for recycling irrigation water (249 g CO<sub>2</sub>-eq m<sup>−2</sup> season<sup>−1</sup>), with CH<sub>4</sub> contributing 70% of average CO<sub>2</sub>-eq emissions. However, irrigation dams had considerably lower CH<sub>4</sub> emissions (mean 40 kg ha<sup>−1</sup> yr<sup>−1</sup>) than the IPCC emission factor (EF) of 183 kg CH<sub>4</sub> ha<sup>−1</sup> yr<sup>−1</sup> for constructed ponds and lower N<sub>2</sub>O EF of 0.06% than the indirect EF for agricultural surface waters (0.26%). This synoptic survey reveals existing models may be severely overestimating (4–5 times) farm dam CH<sub>4</sub> and N<sub>2</sub>O emissions in semi-arid irrigation areas. Further research is needed to define these artificial waterbodies in emissions accounting.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"123 - 138"},"PeriodicalIF":4.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138438705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-23DOI: 10.1007/s10533-023-01097-w
Henri Honkanen, Hanna Kekkonen, Jaakko Heikkinen, Janne Kaseva, Kristiina Lång
{"title":"Minor effects of no-till treatment on GHG emissions of boreal cultivated peat soil","authors":"Henri Honkanen, Hanna Kekkonen, Jaakko Heikkinen, Janne Kaseva, Kristiina Lång","doi":"10.1007/s10533-023-01097-w","DOIUrl":"10.1007/s10533-023-01097-w","url":null,"abstract":"<div><p>The greenhouse gas (GHG) emissions of spring cereal monoculture under long-term conventional tillage (CT) and no-till (NT) treatment established in 2018 were measured in a peatland in Southwestern Finland during the period 2018–2021. Nitrous oxide (N<sub>2</sub>O), carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) fluxes were measured with chambers approximately every two weeks throughout the period under study. Net ecosystem exchange was measured during the growing seasons, and hourly ecosystem respiration (ER) and gross photosynthesis (GP) were modelled with empirical models. Across the whole period, annual emissions were 6.8 ± 1.2 and 5.7 ± 1.2 Mg CO<sub>2</sub>–C ha <sup>−1</sup> yr<sup>−1</sup> (net ecosystem carbon balance), 8.8 ± 2.0 and 7.1 ± 2.0 kg N<sub>2</sub>O–N ha<sup>−1</sup> yr<sup>−1</sup>, and − 0.43 ± 0.31 and − 0.40 ± 0.31 kg CH<sub>4</sub>-C ha<sup>−1</sup> yr<sup>−1</sup> for CT and NT, respectively. The global warming potential was lower in NT (p = 0.045), and it ranged from 26 to 34 Mg CO<sub>2</sub> eq. ha<sup>−1</sup> yr<sup>−1</sup> in CT and from 19 to 31 Mg CO<sub>2</sub> eq. ha<sup>−1</sup> yr<sup>−1</sup> in NT. The management effect on the rates of single GHGs was not consistent over the years. Higher GP was found in CT in 2019 and in NT in 2020. Differences in ER between treatments occurred mostly outside the growing season, especially after ploughing, but the annual rates did not differ statistically. NT reduced the N<sub>2</sub>O emissions by 31% compared to CT in 2020 (p = 0.044) while there were no differences between the treatments in other years. The results indicate that NT may have potential to reduce slightly CO<sub>2</sub> and N<sub>2</sub>O emissions from cultivated peat soil, but the results originate from the first three years after a management change from CT to NT, and there is still a lack of long-term results on NT on cultivated peat soils.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"499 - 522"},"PeriodicalIF":3.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01097-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138297161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-21DOI: 10.1007/s10533-023-01099-8
Joseph E. Carrara, Nanette C. Raczka, Edward R. Brzostek
{"title":"Long-term nitrogen fertilization impacts plant-microbial interactions differently in arbuscular and ectomycorrhizal trees","authors":"Joseph E. Carrara, Nanette C. Raczka, Edward R. Brzostek","doi":"10.1007/s10533-023-01099-8","DOIUrl":"10.1007/s10533-023-01099-8","url":null,"abstract":"<div><p>Enhanced nitrogen (N) availability in temperate forests has altered ecosystem carbon (C) and N cycling. Recent research has shown that these alterations lead to reductions in belowground C allocation by trees and that the consequences of these reductions on soil C and nutrient cycling may vary by mycorrhizal type. We hypothesized that trees that associate with ectomycorrhizal fungi (ECM) would reduce C allocation towards roots and mycorrhizal fungi to a greater extent than trees that associate with arbuscular mycorrhizal fungi (AM) in response to > 25 years of N fertilization. We further hypothesized that N induced decoupling of roots and microbes in ECM trees would be evidenced by greater declines in extracellular enzyme activities. We measured belowground C allocation to fine root biomass and mycorrhizal colonization in 6 AM and 6 ECM dominated plots in the N fertilized and reference watersheds at the Fernow Experimental Forest in West Virginia, USA. We compared these to measurements of simple-C, complex-C, nitrogen, and phosphorus acquiring enzyme activities in organic horizon, bulk mineral, and rhizosphere soil fractions. N fertilization reduced fine root biomass and mycorrhizal colonization in both AM and ECM stands. We found more consistent reductions in enzyme activities in ECM soils than AM soils under N fertilization which may have been driven by greater declines in root-C transfer to soil microbes. This mechanism helps to explain variability in soil C cycling responses across N gradient and fertilization experiments and may prove useful in predicting the fate of soil C stocks in response to N deposition.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"109 - 122"},"PeriodicalIF":4.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-21DOI: 10.1007/s10533-023-01106-y
Ana Fernández-Carrera, Rainer Kiko, Helena Hauss, Douglas S. Hamilton, Eric P. Achterberg, Joseph P. Montoya, Marcus Dengler, Peter Brandt, Ajit Subramaniam
{"title":"Correction to: Nitrogen fixation rates in the Guinea Dome and the equatorial upwelling regions in the Atlantic Ocean","authors":"Ana Fernández-Carrera, Rainer Kiko, Helena Hauss, Douglas S. Hamilton, Eric P. Achterberg, Joseph P. Montoya, Marcus Dengler, Peter Brandt, Ajit Subramaniam","doi":"10.1007/s10533-023-01106-y","DOIUrl":"10.1007/s10533-023-01106-y","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 1","pages":"97 - 98"},"PeriodicalIF":3.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01106-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-18DOI: 10.1007/s10533-023-01094-z
Maximilian Barczok, Chelsea Smith, Nicolle Di Domenico, Lauren Kinsman-Costello, David Singer, Elizabeth Herndon
{"title":"Influence of contrasting redox conditions on iron (oxyhydr)oxide transformation and associated phosphate sorption","authors":"Maximilian Barczok, Chelsea Smith, Nicolle Di Domenico, Lauren Kinsman-Costello, David Singer, Elizabeth Herndon","doi":"10.1007/s10533-023-01094-z","DOIUrl":"10.1007/s10533-023-01094-z","url":null,"abstract":"<div><p>Iron (oxyhydr)oxides strongly adsorb phosphate and limit its bioavailability, but interactions between phosphate and various Fe (oxyhydr)oxides are poorly constrained in natural systems. An in-situ incubation experiment was conducted to explore Fe (oxyhydr)oxide transformation and effects on phosphate sorption in soils with contrasting saturation and redox conditions. Synthetic Fe (oxyhydr)oxides (ferrihydrite, goethite and hematite) were coated onto quartz sand and either pre-sorbed with phosphate or left phosphate-free. The oxide-coated sands were mixed with natural organic matter, enclosed in mesh bags, and buried in and around a vernal pond for up to 12 weeks. Redox conditions were stable and oxic in the upland soils surrounding the vernal pond but largely shifted from Fe reducing to Fe oxidizing in the lowland soils within the vernal pond as it dried during the summer. Iron (oxyhydr)oxides lost more Fe (− 41% ± 10%) and P (− 43 ± 11%) when incubated in the redox-dynamic lowlands compared to the uplands (− 18% ± 5% Fe and − 24 ± 8% P). Averaged across both uplands and lowlands, Fe losses from crystalline goethite and hematite (− 38% ± 6%) were unexpectedly higher than losses from short range ordered ferrihydrite (− 12% ± 10%). We attribute losses of Fe and associated P from goethite and hematite to colloid detachment and dispersion but losses from ferrihydrite to reductive dissolution. Iron losses were partially offset by retention of solubilized Fe as organic-bound Fe(III). Iron (oxyhydr)oxides that persisted during the incubation retained or even gained P, indicating low amounts of phosphate sorption from solution. These results demonstrate that hydrologic variability and Fe (oxyhydr)oxide mineralogy impact Fe mobilization pathways that may regulate phosphate bioavailability.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"87 - 107"},"PeriodicalIF":4.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138292913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-14DOI: 10.1007/s10533-023-01098-9
Taylor Saunders, Jaron Adkins, Karen H. Beard, Trisha B. Atwood, Bonnie G. Waring
{"title":"Herbivores influence biogeochemical processes by altering litter quality and quantity in a subarctic wetland","authors":"Taylor Saunders, Jaron Adkins, Karen H. Beard, Trisha B. Atwood, Bonnie G. Waring","doi":"10.1007/s10533-023-01098-9","DOIUrl":"10.1007/s10533-023-01098-9","url":null,"abstract":"<div><p>Global change drivers that modify the quality and quantity of litter inputs to soil affect greenhouse gas fluxes, and thereby constitute a feedback to climate change. Carbon cycling in the Yukon–Kuskokwim (Y–K) River Delta, a subarctic wetland system, is influenced by landscape variations in litter quality and quantity generated by herbivores (migratory birds) that create ‘grazing lawns’ of short stature, nitrogen-rich vegetation. To identify the mechanisms by which these changes in litter inputs affect soil carbon balance, we independently manipulated qualities and quantities of litter representative of levels found in the Y–K Delta in a fully factorial microcosm experiment. We measured CO<sub>2</sub> fluxes from these microcosms weekly. To help us identify how litter inputs influenced greenhouse gas fluxes, we sequenced soil fungal and bacterial communities, and measured soil microbial biomass carbon, dissolved carbon, inorganic nitrogen, and enzyme activity. We found that positive correlations between litter input quantity and CO<sub>2</sub> flux were dependent upon litter type, due to differences in litter stoichiometry and changes to the structure of decomposer communities, especially the soil fungi. These community shifts were particularly pronounced when litter was added in the form of herbivore feces, and in litter input treatments that induced nitrogen limitation (i.e., senesced litter). The sensitivity of carbon cycling to litter quality and quantity in this system demonstrates that herbivores can strongly impact greenhouse gas fluxes through their influence on plant growth and tissue chemistry.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"67 - 85"},"PeriodicalIF":4.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01098-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109126768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-10DOI: 10.1007/s10533-023-01093-0
Stephan Glatzel, Fred Worrall, Ian M. Boothroyd, Katherine Heckman
{"title":"Comparison of the transformation of organic matter flux through a raised bog and a blanket bog","authors":"Stephan Glatzel, Fred Worrall, Ian M. Boothroyd, Katherine Heckman","doi":"10.1007/s10533-023-01093-0","DOIUrl":"10.1007/s10533-023-01093-0","url":null,"abstract":"<div><p>This study has proposed that organic matter transfer and transformation into and through a peatland is dominated by preferential loss of carbohydrates and the retention of lignin-like molecules. Here we used elemental analysis and thermogravimetric analysis to analyse the biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter fluxes sampled from a continental raised bog in comparison a maritime blanket bog. The macromolecular composition and thermodynamic analysis showed that in the raised bog there had been little or no transformation of the organic matter and the accumulation was rapid with comparatively little transformation with only 13% loss of cellulose by 1 m depth compared to 92% removal of cellulosic material in the blanket bog. The lack of transformation is reflected in a difference in long term carbon accumulation rates between raised and blanket bog sites. We propose that raised bogs, with their lack of a stream outfall, have high stable water tables that mean the pore water become thermodynamically closed and reactions cease higher in the peat profile than in a blanket bog where sloping sites mean a frequent flushing of pore water and discharge of water leading to fluctuating water tables, flushing of reaction products and pore spaces remaining open.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"443 - 459"},"PeriodicalIF":3.9,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01093-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72365326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-10DOI: 10.1007/s10533-023-01090-3
Erin K. Eberhard, Evan S. Kane, Amy M. Marcarelli
{"title":"Heterogeneity in habitat and nutrient availability facilitate the co-occurrence of N2 fixation and denitrification across wetland–stream–lake ecotones of Lakes Superior and Huron","authors":"Erin K. Eberhard, Evan S. Kane, Amy M. Marcarelli","doi":"10.1007/s10533-023-01090-3","DOIUrl":"10.1007/s10533-023-01090-3","url":null,"abstract":"<div><p>Great Lakes coastlines are mosaics of wetland, stream, and lake habitats, characterized by a high degree of spatial heterogeneity that may facilitate the co-occurrence of seemingly incompatible biogeochemical processes due to variation in environmental factors that favor each process. We measured nutrient limitation and rates of N<sub>2</sub> fixation and denitrification along transects in 5 wetland–stream–lake ecotones with different nutrient loading in Lakes Superior and Huron. We hypothesized that rates of both processes would be related to nutrient limitation status, habitat type, and environmental characteristics including temperature, nutrient concentrations, and organic matter quality. We found that median denitrification rates (914 μg N m<sup>−2</sup> h<sup>−1</sup>) were 166 × higher than N<sub>2</sub> fixation rates (5.5 μg N m<sup>−2</sup> h<sup>−1</sup>), but the processes co-occurred in 48% of 83 points measured across all 5 transects and habitat types. N<sub>2</sub> fixation occurred on sediment and macrophyte substrate, while denitrification occurred mostly in sediment. Nutrient-diffusing substrate experiments indicated that biofilm chlorophyll-<i>a</i> was limited by N and/or P at 55% and biofilm AFDM was limited at 26% of sample points. N<sub>2</sub> fixation and denitrification rates did not differ significantly with differing nutrient limitation. Predictive models for N<sub>2</sub> fixation and denitrification rates both included variables related to the composition of dissolved organic matter, while the model for N<sub>2</sub> fixation also included P concentrations. These results demonstrate the potential for heterogeneity in habitat characteristics, nutrient availability, and organic matter composition to lead to biogeochemical complexity at the local scale, despite overall N removal at broader scales.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 3","pages":"169 - 189"},"PeriodicalIF":3.9,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72365363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeochemistryPub Date : 2023-11-07DOI: 10.1007/s10533-023-01092-1
E. A. de Nijs, B. Jansen, S. Absalah, R. Bol, A. Tietema
{"title":"Insight in molecular degradation patterns and co-metabolism during rose waste co-composting","authors":"E. A. de Nijs, B. Jansen, S. Absalah, R. Bol, A. Tietema","doi":"10.1007/s10533-023-01092-1","DOIUrl":"10.1007/s10533-023-01092-1","url":null,"abstract":"<div><p>Composting is recognized as a sustainable waste management strategy. However, little is known about green waste, and specifically rose waste, degradation patterns during composting. This study aimed (1) to gain insight in the underlying decomposition patterns during rose waste composting and (2) to identify co-metabolisms of ligneous material. Five different compost mixtures were tested ranging from pure rose waste to mixtures with tomato waste, kalanchoe waste or mature compost added. Samples were taken during a six-month experiment and analyzed by pyrolysis-GC/MS. The temporal trends in the relative abundance of 10 different compound groups were measured. Lignin and aliphatic compounds together accounted for ≥ 50% of the quantified pyrolysis products, but with changing contributions during composting. The relative abundance of polysaccharides and terpenes strongly decreased with more than 60% in the first 2 months. The simultaneous decrease in relative abundance of lignin and polysaccharides during initial composting phase indicated co-metabolism of lignin. The results from this study showed that while the presence of lignin is commonly regarded as a challenge in composting, it actually undergoes degradation through distinct mechanisms at the various composting stages.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"55 - 66"},"PeriodicalIF":4.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01092-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71512492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}