Biological ChemistryPub Date : 2023-08-28Print Date: 2023-09-26DOI: 10.1515/hsz-2023-0190
Patrick R Reinhardt, Candy D C Theis, Georg Juckel, Nadja Freund
{"title":"Rodent models for mood disorders - understanding molecular changes by investigating social behavior.","authors":"Patrick R Reinhardt, Candy D C Theis, Georg Juckel, Nadja Freund","doi":"10.1515/hsz-2023-0190","DOIUrl":"10.1515/hsz-2023-0190","url":null,"abstract":"<p><p>Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"404 10","pages":"939-950"},"PeriodicalIF":3.7,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10286578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2023-08-28Print Date: 2023-10-26DOI: 10.1515/hsz-2023-0185
Nina Weigert, Anna-Lena Schweiger, Jonas Gross, Marie Matthes, Selim Corbacioglu, Gunhild Sommer, Tilman Heise
{"title":"Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons <i>in vitro</i> and in cells.","authors":"Nina Weigert, Anna-Lena Schweiger, Jonas Gross, Marie Matthes, Selim Corbacioglu, Gunhild Sommer, Tilman Heise","doi":"10.1515/hsz-2023-0185","DOIUrl":"10.1515/hsz-2023-0185","url":null,"abstract":"<p><p>Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs <i>in vitro</i> and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"1123-1136"},"PeriodicalIF":3.7,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10131074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Newborn Direct Bilirubin As Screening for Cholestatic Liver Disease.","authors":"Rikah Lerer, Lily Barash, Suhas Nafday, Debora Kogan Liberman, Nadia Ovchinsky","doi":"10.1097/PG9.0000000000000345","DOIUrl":"10.1097/PG9.0000000000000345","url":null,"abstract":"<p><strong>Background: </strong>Biliary atresia (BA) remains the most common indication for pediatric liver transplantation. Early diagnosis is essential for a favorable long-term prognosis for patients with BA. Preliminary data suggests that measurement of direct bilirubin (DB) in newborns may be an effective screening tool for neonatal cholestasis, particularly BA, allowing for early referral and diagnosis. The objective of our study was to establish a cutoff DB value to predict diagnosis of cholestatic liver disease (CLD) with high sensitivity and specificity, as well as, to evaluate whether newborns with elevated DB received appropriate follow-up in our health system.</p><p><strong>Methods: </strong>Baseline data were collected on infants born between 2016 and 2019 who had serum total bilirubin and DB drawn in the nursery, and who continued to follow in our health system. Sensitivity, specificity, and positive and negative predictive values were examined using cutoff values of 0.5, 0.6, and 0.7 mg/dL for identifying infants at risk for CLD. Patients' charts were reviewed to note whether they had follow-up levels drawn by their pediatrician or by the hepatology team within 2 months of age and whether they were diagnosed with CLD.</p><p><strong>Results: </strong>Serum total bilirubin and DB levels were drawn from 11 965 infants during their hospitalizations. Three infants from this cohort were diagnosed with CLD: 2 with BA and 1 with Alagille syndrome. DB cutoff values of 0.5, 0.6, and 0.7 mg/dL had sensitivity of 100% and specificity of 96.83% (95% confidence interval [CI], 96.69%-97.53%), 99.08% (95% CI, 98.81%-99.30%), and 99.63% (95% CI, 99.4%-99.7%), respectively. Given that a DB of 0.6 mg/dL had a sensitivity of 100% and specificity of 99%, this value was chosen as the cutoff value to monitor for DB follow-up and diagnosis of CLD. Out of 60 infants who met criteria for DB ≥0.6 mg/dL, only 15 (25%) had a repeat level drawn after nursery discharge; 3 (5%) were eventually diagnosed with CLD.</p><p><strong>Conclusions: </strong>A DB cutoff value of 0.6 mg/dL yielded high sensitivity and specificity for identifying patients with CLD. All 3 patients diagnosed with CLD had elevated DB at hospital discharge. The data revealed that the majority (75%) of eligible newborns did not receive follow-up for their elevated DB in the outpatient setting.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"139 1","pages":"e345"},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89027812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of the active site in the thiocyanate-forming protein from <i>Thlaspi arvense</i> (TaTFP) using EPR spectroscopy.","authors":"Haleh Hashemi Haeri, Nicola Schneegans, Daniela Eisenschmidt-Bönn, Wolfgang Brandt, Ute Wittstock, Dariush Hinderberger","doi":"10.1515/hsz-2023-0187","DOIUrl":"10.1515/hsz-2023-0187","url":null,"abstract":"<p><p>Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from <i>Thlaspi arvense</i> (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at <i>X</i>-and <i>Q</i>-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a <i>d</i> <sup>5</sup> electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe<sup>2+</sup>. Without added Fe<sup>2+</sup>, most high spin features of bound Fe<sup>3+</sup> were preserved, while different <i>g</i>'-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe<sup>3+</sup>/Fe<sup>2</sup> in samples with supplemented Fe<sup>2+</sup>. The absence of any EPR signal related to Fe<sup>3+</sup> or Fe<sup>2+</sup> using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"105-118"},"PeriodicalIF":2.9,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2023-08-09Print Date: 2023-09-26DOI: 10.1515/hsz-2023-0198
Sara S Ribeiro, David Gnutt, Salome Azoulay-Ginsburg, Zamira Fetahaj, Ella Spurlock, Felix Lindner, Damon Kuz, Yfat Cohen-Erez, Hanna Rapaport, Adrian Israelson, Arie-Lev Gruzman, Simon Ebbinghaus
{"title":"Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel.","authors":"Sara S Ribeiro, David Gnutt, Salome Azoulay-Ginsburg, Zamira Fetahaj, Ella Spurlock, Felix Lindner, Damon Kuz, Yfat Cohen-Erez, Hanna Rapaport, Adrian Israelson, Arie-Lev Gruzman, Simon Ebbinghaus","doi":"10.1515/hsz-2023-0198","DOIUrl":"10.1515/hsz-2023-0198","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1<sub>bar</sub>) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1<sub>bar</sub>-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"404 10","pages":"909-930"},"PeriodicalIF":3.7,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10334323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2023-08-08Print Date: 2024-03-25DOI: 10.1515/hsz-2023-0204
Mayra Delgado-Ramírez, Ana Laura López-Serrano, Sergio Sánchez-Armass, Ulises Meza, Aldo A Rodríguez-Menchaca
{"title":"Crosstalk between cholesterol and PIP<sub>2</sub> in the regulation of Kv7.2/Kv7.3 channels.","authors":"Mayra Delgado-Ramírez, Ana Laura López-Serrano, Sergio Sánchez-Armass, Ulises Meza, Aldo A Rodríguez-Menchaca","doi":"10.1515/hsz-2023-0204","DOIUrl":"10.1515/hsz-2023-0204","url":null,"abstract":"<p><p>The activity of neuronal Kv7.2/Kv7.3 channels is critically dependent on PIP<sub>2</sub> and finely modulated by cholesterol. Here, we report the crosstalk between cholesterol and PIP<sub>2</sub> in the regulation of Kv7.2/Kv7.3 channels. Our results show that currents passing through Kv7.2/Kv7.3 channels in cholesterol-depleted cells, by acute application of methyl-β-cyclodextrin (MβCD), were less sensitive to PIP<sub>2</sub> dephosphorylation strategies than those of control cells, suggesting that cholesterol depletion enhances the Kv7.2/Kv7.3-PIP<sub>2</sub> interaction. In contrast, the sensitivity of Kv7.2/Kv7.3 channels to acute membrane cholesterol depletion by MβCD was not altered in mutant channels with different apparent affinities for PIP<sub>2</sub>.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"161-165"},"PeriodicalIF":2.9,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9962606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2023-07-31Print Date: 2023-10-26DOI: 10.1515/hsz-2023-0189
Rodrigo Maldonado, Gernot Längst
{"title":"The chromatin - triple helix connection.","authors":"Rodrigo Maldonado, Gernot Längst","doi":"10.1515/hsz-2023-0189","DOIUrl":"10.1515/hsz-2023-0189","url":null,"abstract":"<p><p>Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"1037-1049"},"PeriodicalIF":3.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9885046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2023-07-31Print Date: 2023-07-26DOI: 10.1515/hsz-2023-0145
Michael Habeck
{"title":"Bayesian methods in integrative structure modeling.","authors":"Michael Habeck","doi":"10.1515/hsz-2023-0145","DOIUrl":"10.1515/hsz-2023-0145","url":null,"abstract":"<p><p>There is a growing interest in characterizing the structure and dynamics of large biomolecular assemblies and their interactions within the cellular environment. A diverse array of experimental techniques allows us to study biomolecular systems on a variety of length and time scales. These techniques range from imaging with light, X-rays or electrons, to spectroscopic methods, cross-linking mass spectrometry and functional genomics approaches, and are complemented by AI-assisted protein structure prediction methods. A challenge is to integrate all of these data into a model of the system and its functional dynamics. This review focuses on Bayesian approaches to integrative structure modeling. We sketch the principles of Bayesian inference, highlight recent applications to integrative modeling and conclude with a discussion of current challenges and future perspectives.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"404 8-9","pages":"741-754"},"PeriodicalIF":3.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10178504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ChemistryPub Date : 2023-07-17Print Date: 2023-07-26DOI: 10.1515/hsz-2023-0157
Marieke Enders, Piotr Neumann, Achim Dickmanns, Ralf Ficner
{"title":"Structure and function of spliceosomal DEAH-box ATPases.","authors":"Marieke Enders, Piotr Neumann, Achim Dickmanns, Ralf Ficner","doi":"10.1515/hsz-2023-0157","DOIUrl":"10.1515/hsz-2023-0157","url":null,"abstract":"<p><p>Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"404 8-9","pages":"851-866"},"PeriodicalIF":3.7,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10179636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}