Celastrol inhibits angiogenesis and the biological processes of MDA-MB-231 cells via the DEGS1/S1P signaling pathway

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lulu Jia, Shengnan Zhu, Mingfei Zhu, Rongrong Nie, Lingyue Huang, Siyuan Xu, Yuqin Luo, Huazhen Su, Shaoyuan Huang, Qinyou Tan
{"title":"Celastrol inhibits angiogenesis and the biological processes of MDA-MB-231 cells via the DEGS1/S1P signaling pathway","authors":"Lulu Jia, Shengnan Zhu, Mingfei Zhu, Rongrong Nie, Lingyue Huang, Siyuan Xu, Yuqin Luo, Huazhen Su, Shaoyuan Huang, Qinyou Tan","doi":"10.1515/hsz-2023-0324","DOIUrl":null,"url":null,"abstract":"Celastrol (Cel) shows potent antitumor activity in various experimental models. This study examined the relationship between Cel’s antivascular and antitumor effects and sphingolipids. CCK-8 assay, transwell assay, Matrigel, PCR-array/RT-PCR/western blotting/immunohistochemistry assay, ELISA and HE staining were used to detect cell proliferation, migration and invasion, adhesion and angiogenesis, mRNA and protein expression, S1P production and tumor morphology. The results showed that Cel could inhibit proliferation, migration or invasion, adhesion and angiogenesis of human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 cells by downregulating the expression of degenerative spermatocyte homolog 1 (DEGS1). Transfection experiments showed that downregulation of DEGS1 inhibited the above processes and sphingosine-1-phosphate (S1P) production of HUVECs and MDA-MB-231 cells, while upregulation of DEGS1 had the opposite effects. Coculture experiments showed that HUVECs could promote proliferation, migration and invasion of MDA-MB-231 cells through S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway, while Cel inhibited these processes in MDA-MB-231 cells induced by HUVECs. Animal experiments showed that Cel could inhibit tumor growth in nude mice. Western blotting, immunohistochemistry and ELISA assay showed that Cel downregulated the expression of DEGS1, CD146, S1PR1-3 and S1P production. These data confirm that DEGS1/S1P signaling pathway may be related to the antivascular and antitumor effects of cel.","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0324","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Celastrol (Cel) shows potent antitumor activity in various experimental models. This study examined the relationship between Cel’s antivascular and antitumor effects and sphingolipids. CCK-8 assay, transwell assay, Matrigel, PCR-array/RT-PCR/western blotting/immunohistochemistry assay, ELISA and HE staining were used to detect cell proliferation, migration and invasion, adhesion and angiogenesis, mRNA and protein expression, S1P production and tumor morphology. The results showed that Cel could inhibit proliferation, migration or invasion, adhesion and angiogenesis of human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 cells by downregulating the expression of degenerative spermatocyte homolog 1 (DEGS1). Transfection experiments showed that downregulation of DEGS1 inhibited the above processes and sphingosine-1-phosphate (S1P) production of HUVECs and MDA-MB-231 cells, while upregulation of DEGS1 had the opposite effects. Coculture experiments showed that HUVECs could promote proliferation, migration and invasion of MDA-MB-231 cells through S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway, while Cel inhibited these processes in MDA-MB-231 cells induced by HUVECs. Animal experiments showed that Cel could inhibit tumor growth in nude mice. Western blotting, immunohistochemistry and ELISA assay showed that Cel downregulated the expression of DEGS1, CD146, S1PR1-3 and S1P production. These data confirm that DEGS1/S1P signaling pathway may be related to the antivascular and antitumor effects of cel.
Celastrol 通过 DEGS1/S1P 信号通路抑制血管生成和 MDA-MB-231 细胞的生物过程
Celastrol (Cel) 在各种实验模型中显示出强大的抗肿瘤活性。本研究探讨了 Cel 的抗血管和抗肿瘤作用与鞘磷脂之间的关系。研究采用CCK-8检测法、Transwell检测法、Matrigel检测法、PCR-array/RT-PCR/Western印迹/免疫组化检测法、ELISA和HE染色法检测细胞增殖、迁移和侵袭、粘附和血管生成、mRNA和蛋白表达、S1P生成和肿瘤形态。结果表明,Cel能通过下调变性精母细胞同源物1(DEGS1)的表达,抑制人脐静脉内皮细胞(HUVECs)和MDA-MB-231细胞的增殖、迁移或侵袭、粘附和血管生成。转染实验表明,下调 DEGS1 可抑制 HUVECs 和 MDA-MB-231 细胞的上述过程和 1-磷酸鞘磷脂(S1P)的产生,而上调 DEGS1 则效果相反。共培养实验表明,HUVECs 能通过 S1P/鞘氨醇-1-磷酸受体(S1PR)信号通路促进 MDA-MB-231 细胞的增殖、迁移和侵袭,而 Cel 能抑制 HUVECs 诱导的 MDA-MB-231 细胞的这些过程。动物实验表明,Cel 能抑制裸鼠的肿瘤生长。Western印迹、免疫组织化学和ELISA检测表明,Cel能下调DEGS1、CD146、S1PR1-3的表达和S1P的产生。这些数据证实,DEGS1/S1P 信号通路可能与 Cel 的抗血管和抗肿瘤作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信