{"title":"Evaluation of the Impact of HIFU on Peptide Bond Formation: A Study Using SPE-LC-MS/MS Methodology","authors":"Jiale Liu, Rongfei Yuan, Qi Wang, Hai Qiao, Yuling Yang, Siyu Yang, Hua Zhang, Chang Chen","doi":"10.1002/bmc.6067","DOIUrl":"10.1002/bmc.6067","url":null,"abstract":"<div>\u0000 \u0000 <p>High-intensity focused ultrasound (HIFU) is a noninvasive soft tissue ablation technique, which utilizes ultrasound energy to induce thermal coagulation necrosis in targeted tissues. Whether this high energy causes side effects in vivo, such as the formation of peptide bonds, has not been fully investigated. Glycylglycine is the simplest dipeptide and hence is often used as a model compound for peptide studies. In this study, we developed and validated a sensitive quantification method based on ion-exchange solid-phase extraction, liquid chromatography, and tandem mass spectrometry (SPE-LC-MS/MS) for the analysis of glycylglycine without derivatization, and then used it to evaluate whether HIFU promoted peptide bond formation in aqueous solution (without enzymes) and plasma (with enzymes). The results showed that strong cation exchange SPE significantly reduced the matrix effect and improved the sensitivity of the LC-MS/MS method. No formation of glycylglycine in the aqueous solution or plasma was observed following HIFU irradiation.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly Sensitive LC–MS/MS Method for Determination of Dexamethasone in Rat Plasma and Brain Tissue: An Application to Pharmacokinetic Study in Rats","authors":"Rama Murthi Bestha, Ashok Zakkula, Madipelli Keerthana, Sandeep Kaddare, Niranjan Veerla, Ramesh Mullangi, Sreekanth Dittakavi","doi":"10.1002/bmc.6059","DOIUrl":"10.1002/bmc.6059","url":null,"abstract":"<div>\u0000 \u0000 <p>A highly sensitive and rapid LC–MS/MS method was developed and validated for the quantification of dexamethasone in rat plasma and brain tissue. Protein precipitation method was used for sample preparation. The separation of dexamethasone and the IS (labetalol) was achieved on an Atlantis dC<sub>18</sub> column using an isocratic mobile phase (10 mM ammonium formate and acetonitrile, 25/75, v/v) delivered at 0.7 mL/min flow-rate. Dexamethasone and the IS were eluted at 1.03 and 1.06 min, respectively. The MS/MS transitions monitored were <i>m/z</i> 393.100 → 373.100 (dexamethasone) and 329.100 → 91.100 (IS). Method validation was performed as per FDA guidelines and all parameters met the acceptance criteria. The assay was validated with a quantification range of 0.05–1046 ng/mL in both matrices. The intraday and interday precision for were in the range of 2.62–7.28 and 2.76%–6.98% and 2.24–6.85 and 2.97%–6.37%, in plasma and brain tissue, respectively. Dexamethasone was stable in a series of stability conditions in both matrices. Post-intravenous administration to rats, dexamethasone concentrations in plasma and brain tissue were quantifiable up to 24 and 10 h, respectively. Dexamethasone half-life was ~2.30 h. Dexamethasone exhibited low clearance and moderate volume of distribution in plasma but in brain tissue the clearance and volume of distribution were high.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WenLi Wang, Liming Gu, Xiedong Hong, Zhipiao Gao, Shanghai Liu, Yifan Ren, Yun Wang, Lang Tian, Chang Wang
{"title":"Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS","authors":"WenLi Wang, Liming Gu, Xiedong Hong, Zhipiao Gao, Shanghai Liu, Yifan Ren, Yun Wang, Lang Tian, Chang Wang","doi":"10.1002/bmc.6061","DOIUrl":"10.1002/bmc.6061","url":null,"abstract":"<div>\u0000 \u0000 <p>An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls. Time-series lung tissue samples during the progression of RILI were collected for dynamic metabolomics studies based on gas chromatography–mass spectrometry (GC-MS). Differential metabolites associated with radiation-induced lung injury were identified, followed by metabolite set enrichment analysis to uncover pathway changes in RILI. The results revealed dynamic metabolic alterations in the progression of RILI, primarily involving in glycine and serine metabolism, the urea cycle, the Warburg effect, glutamate metabolism, arginine and proline metabolism, glucose-alanine cycle, and ammonia recycling. In addition, the potential panel of biomarkers including taurine, lysine, and tyrosine of RILI was selected and then applied to evaluate the diagnostic potential for RILI based on the receiving operator characteristic curve (ROC) at the early-stage of RILI. The better sensitivity, specificity, and accuracy indicate the potential of early diagnosis for RILI. These findings suggest that dynamic metabolomics data could provide new insights into understanding the complex metabolic dysregulation underlying RILI, facilitating the selection of biomarkers for early diagnosis.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongjuan Jia, Xingli Liu, Chunran Liu, Yongmei Chen, Wei Li
{"title":"Simultaneous Determination of Vitamins A and E and Their Generated Metabolites in Human Serum by LC–MS/MS","authors":"Yongjuan Jia, Xingli Liu, Chunran Liu, Yongmei Chen, Wei Li","doi":"10.1002/bmc.6064","DOIUrl":"10.1002/bmc.6064","url":null,"abstract":"<div>\u0000 \u0000 <p>In the context of personalized and precision medicine, simultaneous monitoring of different forms of vitamins A and E and their metabolites could help us better understand the status of vitamins A and E in the body. The aim of this study was to establish a method for simultaneous determination of 13 kinds of vitamins A and E and their metabolites in human serum. Serum samples were directly detected by LC–MS/MS after deproteinization. Chromatographic and mass spectrometry parameters were optimized to achieve good separation and sensitivity for these analytes, especially for isomers. Finally, all analytes were effectively separated on Kinetex biphenyl stationary phase. The method covered a large profile of vitamins A and E and their metabolites in a run time only of 10 min. Good linearities were achieved in the quantitative range for each analyte with the correlation coefficients higher than 0.9916. The recoveries were in the range of 78.8%–111.6% with the intraday and interday precisions within 9.6%. This method was simple, sensitive, and accurate and had been successfully applied for the determination of vitamins A and E and their metabolites in human serum samples and could provide technical support for clinical nutritional evaluation of these vitamins.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aiping Li, Ben Li, Ting Cui, Wangning Zhang, Xuemei Qin
{"title":"Investigation of the Potential Material Basis and Mechanism of Astragali Radix Against Adriamycin-Induced Nephropathy Model Rat by 1H NMR and MS-Based Untargeted Metabolomics Analysis","authors":"Aiping Li, Ben Li, Ting Cui, Wangning Zhang, Xuemei Qin","doi":"10.1002/bmc.6054","DOIUrl":"10.1002/bmc.6054","url":null,"abstract":"<div>\u0000 \u0000 <p>Astragali Radix (AR) is one of the monarch drugs of Fangji Huangqi decoction and has the effects of inducing diuresis to alleviate edema, tonifying and strengthening the body. However, there is a paucity of research regarding the effective fraction and the underlying metabolic mechanism of AR on nephrotic syndrome (NS). This work aims to elucidate the potential mechanisms of AR treating NS, as well as to identify effective part and components. Firstly, body weight, kidney index, 24-h urea protein, and biochemical parameters were used to confirm the kidney injury. The most effective part of AR was determined based on the indicators above. Then, <sup>1</sup>H NMR, UHPLC-QTOF/MS, and GC-MS-based metabolomic approaches were used to investigate differential metabolites closely associated with the effective part against NS. A “C-T-P-D” network (a network diagram of “TCM prescription–herbs–components–targets–metabolites–pathways–disease”) was constructed by intersecting the targets of differential metabolites with those of AR treating NS. The efficacy indicators determined the <i>n</i>-butanol part of AR as the best effective part. Multiplatform metabolomics and network pharmacology study indicated that the potential mechanism for treating NS may be related to targets (MIF, SRC, and GBA) and metabolic pathways (citrate cycle, glyoxylate and dicarboxylate metabolism, alanine, aspartate and glutamate metabolism, and glycolysis/gluconeogenesis).</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GC-MS and HPTLC Fingerprinting Analysis and Evaluation of Antimicrobial Activity of Naga Chilli: An In Vitro and In Silico Approach","authors":"Moziihrii Chache, Siddhartha Sankar Das, Deijy Choudhury, Bhargab J. Sahariah, Gouhar Jahan Ashraf, Ranabir Sahu, Tarun Kumar Dua, Manish Majumder, Koushik Nandan Dutta","doi":"10.1002/bmc.6058","DOIUrl":"10.1002/bmc.6058","url":null,"abstract":"<div>\u0000 \u0000 <p>Naga chilli (<i>Capsicum chinense</i> Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography–mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant. An in silico docking study was performed for all the bioactive compounds identified through GC-MS against dihydrofolate reductase, a critical enzyme for bacterial survival. Many important components were identified and quantified with the help of subsequent GC-MS and HPTLC analysis. Among them, capsaicinoids were found to be the most prevalent. GC-MS results showed nonadecane (21.28%), 1-dimethyl(phenyl)silyloxypentane (14.53%), capsaicin (13.55%) and 2-pentanone, 4-hydroxy-4-methyl- (11.42%) were the most prevalent. HPTLC report showed capsaicin was 0.833 mg/g of fresh weight of Naga chilli. This study showed good docking scores for some of the constituents, particularly capsaicin, indicating that this plant is a good candidate for antimicrobial activity. This activity of the extract confirms the docking results, which needs to be in focus for further antimicrobial drug development.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantification of Vactosertib an Inhibitor of TGFBR1 by LC–MS/MS in Rat Plasma and Its Pharmacokinetic Profiling","authors":"Rajesh Kumar Boggavarapu, Jithendra Chimakurthy, Sathish Kumar Konidala","doi":"10.1002/bmc.6057","DOIUrl":"10.1002/bmc.6057","url":null,"abstract":"<div>\u0000 \u0000 <p>Vactosertib, an inhibitor of transforming growth factor β-receptor type-1 (TGFBR1) effective in preventing tumor cell proliferation, is approved for treating various cancers by FDA. The literature revealed that no LC–MS/MS method was reported for the quantification of vactosertib. To develop a validated LC–MS/MS method for the quantification of vactosertib in rat plasma, vactosertib and cabozantinib (internal standard [IS]) were detected using Waters LC–MS/MS system in MRM positive ionization mode, with a mixture of 0.2% formic acid and acetonitrile (70:30, v/v) on an Agilent XDB C18 (50 × 2.1 mm, 5 μm) column at a flow rate of 0.8 mL/min. The method was validated in accordance with M10 bioanalytical method validation USFDA guidelines and applied for the determination of pharmacokinetic parameters in rat plasma. The analytes were detected at m/z 400.23 → 289.19 and m/z 502.13 → 323.07 for vactosertib, and IS, respectively. The method demonstrated a sensitivity of 1.0 ng/mL, linearity ranging from 1.0 to 1000.0 ng/mL, an <i>r</i><sup>2</sup> of 0.999, accuracy ranged between 91.60% and 100.70%, and the drug was found to be stable across all freeze–thaw cycles. The results indicated that the method was selective, accurate, and validated for quantification of vactosertib in biological fluids and pharmacokinetic profiling of vactosertib.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combination of UHPLC-QE-MS and Network Pharmacology to Reveal the Mechanism of Fufang-Duzhong-Jiangu Granules for Treating Knee Osteoarthritis","authors":"Weixiang Wang, Fei Luan, Yajun Shi, Xiaofei Zhang, Dongyan Guo, Jing Sun, Junbo Zou, Puwei Yuan","doi":"10.1002/bmc.6051","DOIUrl":"10.1002/bmc.6051","url":null,"abstract":"<div>\u0000 \u0000 <p>UHPLC-QE-MS technology and network pharmacology are used to comprehensively analyze and validate the potential mechanism of Fufang-Duzhong-Jiangu granules (FFDZ) in treating knee osteoarthritis (KOA). UHPLC-QE-MS technology and content-weighted construction of databases and screening conditions are used to obtain key component targets. CTD, Gene Cards, and DisGeNET databases are used to define KOA-related targets. Target pathways are selected through GO enrichment analysis and KEGG enrichment analysis. Additionally, a KOA rat model was established using the type II collagenase injection method. The efficacy of FFDZ on type II collagenase-induced KOA rats was evaluated through behavioral, biochemical, and histopathological assessments, and the predicted pathways were confirmed through Western blot. These results show that the rats significantly increased in knee joint diameter, decreased weight-bearing capacity of the right leg, and elevated levels of IL-6 and IL-1β in serum, all with a significance level of <i>p</i> < 0.05. Through CT and HE staining, it was shown that KOA rats exhibit distinct pathological structures. These results show that FFDZ exerts its anti-KOA effects by regulating the RAS pathway. This study found that FFDZ improves KOA in rats by inhibiting the expression of proteins related to the RAS pathway.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianhui Luo, Songshen Chen, WenYang Song, Yongtong Huang, Song Gao, Jiu Wang
{"title":"Development of a UPLC-MS/MS Method for Bioanalysis of Ethoxysanguinarine and Its Application in Pharmacokinetic Study of Ethoxysanguinarine Nanoemulsion","authors":"Jianhui Luo, Songshen Chen, WenYang Song, Yongtong Huang, Song Gao, Jiu Wang","doi":"10.1002/bmc.6055","DOIUrl":"https://doi.org/10.1002/bmc.6055","url":null,"abstract":"<div>\u0000 \u0000 <p>Ethoxysanguinarine (ETSG), a benzophenanthridine alkaloid, exhibits diverse biological activities, including antibacterial, antifungal, anti-inflammatory, antioxidant, and anti-tumor effects. Despite these properties, limited research exists on ETSG in vivo pharmacokinetics due to its poor solubility and low bioavailability. In this study, we developed a rapid and specific UPLC-MS/MS method for ETSG bioanalysis. Sample preparation involved one-step protein precipitation using methanol and phellodendrine as an internal standard (IS). The Waters HSS T3 column (2.1 * 50 mm, 1.8 μM) employed a gradient elution with mobile phases A (2 mmol/L ammonium formate aqueous solution-formic acid [99.8:0.2, v/v]) and B (methanol-formic acid [99.8:0.2, v/v]). Mass analysis via Waters Q-mass spectrometer utilized positive scan mode and multiple reaction monitoring. ETSG and IS were detected at m/z 332.0 → 274.0 and 342.0 → 177.0, respectively, within 7.0 min. The method demonstrated excellent precision, accuracy, recovery, and stability, with a linear calibration curve (1.1–560 ng/mL) and strong correlation coefficient (0.9984). Successful pharmacokinetic evaluation in Sprague–Dawley rats included intravenous ETSG administration and intragastric ETSG nanoemulsion/suspension. This method enables steroidal saponin analysis from ETSG in biological samples.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of CYP3A4 Variants on Methadone Metabolism In Vitro","authors":"Chen-chen Wang, Ming-lei Zhang, Yan-dan Xu, Guo-xin Hu, Jian-ping Cai, Tian Lan, Yong-feng Bai","doi":"10.1002/bmc.6056","DOIUrl":"https://doi.org/10.1002/bmc.6056","url":null,"abstract":"<div>\u0000 \u0000 <p>In hepatic drug metabolism, cytochrome P450 (CYP450) enzymes, particularly CYP3A4, catalyze the majority of drug biotransformations, accounting for over 50% of the CYP450 family's metabolic capacity. This study aimed to assess the catalytic efficiency of 22 CYP3A4 allelic variants on the in vitro oxidative metabolism of methadone. We utilized a baculovirus-insect cell expression system to produce recombinant CYP3A4 variants and subsequently assessed their catalytic activity in the <i>N</i>-demethylation of methadone. Of the 23 tested CYP3A4 allelic variants, CYP3A4*1 represents the wild type. Compared with CYP3A4*1, 12 variants displayed significantly lower intrinsic clearance of methadone, while 3 variants showed increased intrinsic clearance of methadone. Additionally, six variants demonstrated no significant difference in intrinsic clearance of methadone compared to CYP3A4*1, and one variant showed no detectable expression. Our evaluation of the enzymatic activity of CYP3A4 gene polymorphisms on methadone can aid in the personalized clinical use of methadone and facilitate the investigation into the relationship between genetic variations and clinical phenotypes.</p>\u0000 </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}