{"title":"Fostering innovation to solve the biomechanics of microbe–host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology","authors":"Luis Vigetti, Isabelle Tardieux","doi":"10.1111/boc.202300016","DOIUrl":"10.1111/boc.202300016","url":null,"abstract":"<p>The protozoa, <i>Toxoplasma gondii</i> and <i>Plasmodium</i> spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.</p>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202300016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special issue for biology of the cell “intracellular trafficking of viruses”","authors":"Raphael Gaudin, Maika S. Deffieu","doi":"10.1111/boc.202300046","DOIUrl":"10.1111/boc.202300046","url":null,"abstract":"In this special issue of Biology of the Cell, https:// onlinelibrary.wiley.com/doi/toc/10.1111/(ISSN)1768322X.viruses the authors explored the literature, describing how viruses exploit various host machineries to enter, replicate and exit from cells. The review by Gerber-Tichet & Kremer describes the variability in human adenoviruses immune response which is important for the design of virus-based vaccines. Focusing on skin cells, they outline the role of various adenovirus receptors for efficient infection of immune cells. They also highlight the importance of post-translational modifications of cell surface proteins in virus uptake (Gerber-Tichet Dienst & Kremer, 2022). Because virusreceptor interactions and subsequent viral fusion with host membrane cells are highly dynamic processes, advanced imaging tools are needed to shed light on virus entry. S. Padilla-Parra reviewed key microscopy approaches to study these steps in the context of HIV1 entry and fusion, including single particle tracking and spectral imaging (Padilla-Parra, 2023). The actin cytoskeleton plays a pivotal role during virus entry, but also exit from cells. The review by Serrano et al. describes how HIV-1 remodels the actin cytoskeleton during virus-receptor interactions, and proposes a model for the role of the actin cytoskeleton in HIV-1 assembly, budding, and release (Serrano et al., 2023). Viruses have evolved numerous strategies to travel within the cell from compartment-to-compartment. The review by Prasad & Bartenschlager describes how SARS-CoV-2 impacts intracellular trafficking pathways, including the hijacking of endosomal transport, modulation of ER/Golgi/endosomes membrane contact sites, inhibition of cellular mRNA nuclear export, perturba-","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9927162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madison E. Bates, Sarah Libring, Cynthia A. Reinhart-King
{"title":"Forces exerted and transduced by cancer-associated fibroblasts during cancer progression","authors":"Madison E. Bates, Sarah Libring, Cynthia A. Reinhart-King","doi":"10.1111/boc.202200104","DOIUrl":"10.1111/boc.202200104","url":null,"abstract":"<p>Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.</p>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 8","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9933163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do different exosome biogenesis pathways and selective cargo enrichment contribute to exosomal heterogeneity?","authors":"Shatakshi Shukla, Fatema Currim, Rajesh Singh","doi":"10.1111/boc.202200116","DOIUrl":"10.1111/boc.202200116","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Exosomes are emerging intercellular communicators essential for cellular homeostasis during development and differentiation. The dysregulation in exosome-mediated communication alters cellular networking leads to developmental defects and chronic diseases. Exosomes are heterogeneous in nature depending on differences in size, membrane protein abundance, and differential cargo load. In this review, we have highlighted the latest developments in exosome biogenesis pathways, heterogeneity, and selective enrichment of various exosomal cargoes including proteins, nucleic acids, and mitochondrial DNA. Furthermore, the recent developments in the isolation techniques of exosome subpopulations have also been discussed. The comprehensive knowledge of extracellular vesicle (EV) heterogeneity and selective cargo enrichment during specific pathology may provide a clue for disease severity and early prognosis possibilities. The release of specific exosome subtypes is associated with the progression of specific disease type and hence a probable tool for therapeutics and biomarker development.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9793494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Mularski, Ryszard Wimmer, Floriane Arbaretaz, Gabriel Le Goff, Manon Depierre, Florence Niedergang
{"title":"Dynamin-2 controls actin remodeling for efficient complement receptor 3-mediated phagocytosis","authors":"Anna Mularski, Ryszard Wimmer, Floriane Arbaretaz, Gabriel Le Goff, Manon Depierre, Florence Niedergang","doi":"10.1111/boc.202300001","DOIUrl":"10.1111/boc.202300001","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background information</h3>\u0000 \u0000 <p>Phagocytosis is the mechanism of the internalization of large particles, microorganisms and cellular debris. The complement pathway represents one of the first mechanisms of defense against infection and the complement receptor 3 (CR3), which is highly expressed on macrophages, is a major receptor for many pathogens and debris. Key to dissecting the mechanisms by which CR3-mediated phagocytosis occurs, is understanding how the complex actin binding protein machinery and associated regulators interact with actin during phagocytosis, from triggering of receptor, through to phagosome formation and closure.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Here, we reveal that Dynamin-2 is recruited concomitantly with polymerized actin at the phagocytic cup and during phagosome formation and closure. Inhibition of Dynamin activity leads to stalled phagocytic cups and a decrease in the amount of F-actin at the site of phagocytosis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Dynamin-2 regulates the assembly of the F-actin phagocytic cup for successful CR3-mediated phagocytosis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Significance</h3>\u0000 \u0000 <p>These results highlight an important role for Dynamin-2 in actin remodeling downstream of integrins.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202300001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10167292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Céline Gounou, Flora Bouvet, Benjamin Liet, Valérie Prouzet-Mauléon, Léna d'Agata, Etienne Harté, Françoise Argoul, Géraldine Siegfried, Richard Iggo, Abdel-Majid Khatib, Anthony Bouter
{"title":"Annexin-A5 and annexin-A6 silencing prevents metastasis of breast cancer cells in zebrafish","authors":"Céline Gounou, Flora Bouvet, Benjamin Liet, Valérie Prouzet-Mauléon, Léna d'Agata, Etienne Harté, Françoise Argoul, Géraldine Siegfried, Richard Iggo, Abdel-Majid Khatib, Anthony Bouter","doi":"10.1111/boc.202200110","DOIUrl":"10.1111/boc.202200110","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background Information</h3>\u0000 \u0000 <p>During tumor invasion and metastasis processes, cancer cells are exposed to major compressive and shearing forces, due to their migration through extracellular matrix, dense cell areas, and complex fluids, which may lead to numerous plasma membrane damages. Cancer cells may survive to these mechanical stresses thanks to an efficient membrane repair machinery. Consequently, this machinery may constitute a relevant target to inhibit cancer cell dissemination.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We show here that annexin-A5 (ANXA5) and ANXA6 participate in membrane repair of MDA-MB-231 cells, a highly invasive triple-negative breast cancer cell line. These crucial components of the membrane repair machinery are substantially expressed in breast cancer cells in correlation with their invasive properties. In addition, high expression of ANXA5 and ANXA6 predict poor prognosis in high-grade lung, gastric, and breast cancers. In zebrafish, the genetic inhibition of ANXA5 and ANXA6 leads to drastic reduction of tumor cell dissemination.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>We conclude that the inhibition of ANXA5 and ANXA6 prevents membrane repair in cancer cells, which are thus unable to survive to membrane damage during metastasis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Significance</h3>\u0000 \u0000 <p>This result opens a new therapeutic strategy based on targeting membrane repair machinery to inhibit tumor invasion and metastasis.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202200110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9949294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information","authors":"","doi":"10.1002/nml.21421","DOIUrl":"https://doi.org/10.1002/nml.21421","url":null,"abstract":"","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49549172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic reprogramming in response to cell mechanics","authors":"Rebecca L. Splitt, Kris A. DeMali","doi":"10.1111/boc.202200108","DOIUrl":"10.1111/boc.202200108","url":null,"abstract":"<p>Much attention has been dedicated to understanding how cells sense and respond to mechanical forces. The types of forces cells experience as well as the repertoire of cell surface receptors that sense these forces have been identified. Key mechanisms for transmitting that force to the cell interior have also emerged. Yet, how cells process mechanical information and integrate it with other cellular events remains largely unexplored. Here we review the mechanisms underlying mechanotransduction at cell-cell and cell-matrix adhesions, and we summarize the current understanding of how cells integrate information from the distinct adhesion complexes with cell metabolism.</p>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202200108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9836738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The microtubule lattice: a brief historical perspective","authors":"Denis Chrétien, Charlotte Guyomar","doi":"10.1111/boc.202300004","DOIUrl":"10.1111/boc.202300004","url":null,"abstract":"<p>At first glance, the structure of a microtubule is simple. Globular α- and β-tubulin subunits form constitutive heterodimers that align head-to-tail in protofilaments. In the most common configuration, 13 protofilaments associate laterally with a slight longitudinal stagger that results in a left-handed 3-start helix featuring lateral associations between tubulin subunits. This seemingly straightforward description is actually based on almost half a century of research aimed at understanding how tubulin dimers interact within the microtubule lattice. But while we start to have a good overview of their architecture in vitro, our knowledge of microtubule-lattice organization in vivo is nowhere near to being complete.</p>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"115 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202300004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9476582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}