Biocatalysis and Biotransformation最新文献

筛选
英文 中文
A design of experiment approach for optimized production of encapsulated trypsin using nano spray drying: Comparative physicochemical and kinetic characterization 纳米喷雾干燥优化胰蛋白酶胶囊化生产的实验方法设计:比较理化和动力学表征
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-11-01 DOI: 10.1080/10242422.2023.2274815
Heidi Mohamed Abdel-Mageed, Shahinaze A. Fouad, Dina Nada, Rana R. Makar, Mahmoud H. Teaima, Nesrine Abdelrehim EL Gohary, Nermeen Z. AbuelEzz
{"title":"A design of experiment approach for optimized production of encapsulated trypsin using nano spray drying: Comparative physicochemical and kinetic characterization","authors":"Heidi Mohamed Abdel-Mageed, Shahinaze A. Fouad, Dina Nada, Rana R. Makar, Mahmoud H. Teaima, Nesrine Abdelrehim EL Gohary, Nermeen Z. AbuelEzz","doi":"10.1080/10242422.2023.2274815","DOIUrl":"https://doi.org/10.1080/10242422.2023.2274815","url":null,"abstract":"AbstractEnzymes are challenging to formulate due to their inherent instability, particularly in solution. This study aims to use the design of experiment (DOE) approach to develop spray-dried encapsulated trypsin nano-powder (TrySP) with maximum activity and stability using a Büchi B-90 nano spray dryer. A 53 full factorial design with 26 randomly ordered experiments was created to study the impact of process variables on the quality attributes of TrySP. The additive concentration (%), mesh cap size (μm), inlet temperature (Tinlet) (°C), trypsin concentration (%), and additive type (Mannitol or trehalose) were selected as the independent variables. The dependent parameters were yield value, particle size, residual enzyme activity, and moisture content. Further, comparative physicochemical and kinetic characterization of TrySP was performed. TrySP had diverse qualities (yield value 60.2–96.8%, residual activity >90–50%, particle size 314–1030 nm, and moisture content 0.7–2.2%). Optimized TrySP exhibited 89% yield value and 95% residual activity in the presence of 8% (w/w) mannitol. Kcat of TypSP increased from 22.5/s to 25.6/s with improved operational and storage stabilities. The half-life (t1/2) of TrySP showed 6 folds increase. Furthermore, TrySP activation energy increased from 45,918 J/mol to 94,491 J/mol. The sustainable model presented in this study enables the development of a thermostable, encapsulated trypsin nano-powder with physical and chemical properties that are optimized for various biotechnological industrial applications.Keywords: Büchi B-90 spray dryingdesign of experimentsimmobilizationtrypsin enzyme formulationkinetic parametersnano powder Authors’ contributionsHM established, designed, and carried out some of the experiments, assisted with data analysis, and wrote the majority of the manuscript. SA and NZ co-developed the concept, designed some of the experiments, assisted with the analysis of data, and revised the written material. MT set up, carried out, and analyzed the factorial design, as well as writing the appropriate manuscript parts. DN, RM, and NA, carried out the experimental part and reviewed the written. The final manuscript was read and approved by all authors.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe datasets generated during and/or analyzed during the present study are provided by corresponding author upon request.Additional informationFundingOpen access funding is provided by Science, Technology and Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). The authors did not receive any external funding from any organization for the submitted work.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient biotransformations in Cunninghamella elegans and Streptomyces sp. JCM9888 of selectively fluorinated benzoic acids to the corresponding benzamides and benzyl alcohols 选择性氟化苯甲酸在线虫和链霉菌JCM9888中高效转化为相应的苯酰胺和苯甲醇
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-10-12 DOI: 10.1080/10242422.2023.2267156
Oluwayinka O. Oke, Yawen Chen, Chukwuemeka Isanbor, Olayinka T. Asekun, David O’Hagan
{"title":"Efficient biotransformations in <i>Cunninghamella elegans</i> and <i>Streptomyces sp.</i> JCM9888 of selectively fluorinated benzoic acids to the corresponding benzamides and benzyl alcohols","authors":"Oluwayinka O. Oke, Yawen Chen, Chukwuemeka Isanbor, Olayinka T. Asekun, David O’Hagan","doi":"10.1080/10242422.2023.2267156","DOIUrl":"https://doi.org/10.1080/10242422.2023.2267156","url":null,"abstract":"An efficient conversion of ortho, meta and para fluoro- and trifluoromethyl-substituted benzoic acids to the corresponding benzamides in fermentations of the soil bacterium Streptomyces sp. JCM9888 is described. We also report the efficient reduction of the same class of substrates to the corresponding benzyl alcohols with the fungi Cunninghamella elegans. These biotransformations were surprisingly efficient and may have value as disruptive technologies in process chemistry.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135968999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc hydroxide salts as new supports for the immobilization of Pseudomonas cepacia lipase 氧化锌盐作为洋葱假单胞菌脂肪酶固定化的新载体
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-10-05 DOI: 10.1080/10242422.2023.2265019
Glauco Silva Dias, David Alexander Mitchell, Fernando Wypych, Nadia Krieger
{"title":"Zinc hydroxide salts as new supports for the immobilization of <i>Pseudomonas cepacia</i> lipase","authors":"Glauco Silva Dias, David Alexander Mitchell, Fernando Wypych, Nadia Krieger","doi":"10.1080/10242422.2023.2265019","DOIUrl":"https://doi.org/10.1080/10242422.2023.2265019","url":null,"abstract":"AbstractLayered double hydroxides (LDHs) are brucite-like nanomaterials that have been used to immobilize several enzymes. However, layered hydroxide salts (LHSs), another group of brucite-like nanomaterials, have not yet been used for enzyme immobilization. In this work, we prepared two types of layered hydroxide salts, zinc hydroxide nitrate (ZHN: Zn5(OH)8(NO3)2.2H2O) and zinc hydroxide chloride (ZHC: Zn5(OH)8Cl2.H2O) and used them to immobilize Pseudomonas cepacia lipase (LipPS). The best protein loading for both ZHN and ZHC was 162.5 mg g−1 of LHS, which gave high values of triolein-hydrolyzing activity in organic medium (103 U g−1 for LipPS-ZHN and 105 U g−1 for LipPS-ZHC), immobilization efficiencies above 90% and activity retentions above 170%. In the kinetic resolution of (R,S)-1-phenylethanol, LipPS-ZHN gave better results, with 50% conversion being obtained in 2 h and an ees of 99%. With LipPS-ZHC, the conversion at 2 h was 40% and the ees, was lower, only 73%. For both immobilized materials, the eep was higher than 99% and E was higher than 200. The immobilized materials were stable after 5 cycles of reuse in successive 2-h kinetic resolutions. These results demonstrate that the layered hydroxide salts ZHN and ZHC have good potential as supports for the immobilization of lipases.Keywords: Pseudomonas cepacia lipaseimmobilizationlayered hydroxide saltsenzymatic kinetic resolution Authors’ contributionsAll authors contributed to the conception and design of the study. Material preparation, data collection and analysis were performed by Glauco Silva Dias. Nadia Krieger and Fernando Wypych directly supervised the work. The first draft of the manuscript was written by Glauco Silva Dias and all authors commented on this first draft and subsequent versions of the manuscript. All authors read and approved the final manuscript.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Although funding was received from various research funding agencies (listed in the acknowledgements section), none of the funding agencies were involved in the design, execution or reporting of the work.Additional informationFundingThis study was financed (Finance Code 001) by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), a Brazilian government agency for the development of personnel in higher education and by a project financed by the Brazilian-Argentine Biotechnology Center (CBAB/CABBIO) and administered by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), a Brazilian government agency for the advancement of science and technology (Project 441015/2016-6). Research scholarships were granted to Glauco Silva Dias by CAPES and to David Alexander Mitchell, Fernando Wypych and Nadia Krieger by CNPq. These funding agencies were not involved in the design, execution or reporting of the work.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and biodegradation of paracetamol by Bacillus pumilus strain PYP2 矮芽孢杆菌PYP2对乙酰氨基酚的特性及生物降解研究
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-10-02 DOI: 10.1080/10242422.2023.2261592
Sunil Chopra, Dharmender Kumar
{"title":"Characterization and biodegradation of paracetamol by <i>Bacillus pumilus</i> strain PYP2","authors":"Sunil Chopra, Dharmender Kumar","doi":"10.1080/10242422.2023.2261592","DOIUrl":"https://doi.org/10.1080/10242422.2023.2261592","url":null,"abstract":"AbstractAs we know the recent pandemic, coronavirus disease (COVID-19) due to SARS CoV-2 virus has led to an increase in the consumption of various drugs as medicines by the patients. Paracetamol (acetaminophen, APAP) act as an emerging contaminant classified among the class pharmaceutical and personal care pollutant (PPCP) and is detected in wastewater and sewage systems. The enrichment culture approach was used for the isolation APAP-degrading bacterium wastewater sample. Microscopic examination, biochemical and 16S rRNA sequence analysis showed that the isolate PYP-2 belongs to the Bacillus pumilus strain. Shake flask and batch culture degradation studies have shown that the strain can degrade APAP. Further, the response surface methodology (RSM) plot was used to know the best physical condition for biodegradation by optimization study. The optimum pH of 5.0, temperature of 30 °C, agitation speed of 146 rpm, and APAP 267 mg/L concentration were reported for PYP-2-based degradation. Bacterial biomass kinetic analysis was performed at the best physical condition, and the results showed that the specific growth rate (µ) was 713 mg/L. Oxalic acid, 2-isopropyl-5-methyl cyclohexanone, and phenothiazine were the intermediates of the APAP degradation pathway detected by the GC-MS chromatogram peaks. Therefore, this research has shown that Bacillus pumilus strain PYP-2 has the metabolic capacity to biodegrade APAP, providing new tools for bioremediation.Keywords: ParacetamolBacillus pumilus strain PYP-2biodegradation16S rRNA sequence analysisshake flask studywastewater AcknowledgmentsThe authors are thankful to Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology Murthal Sonipat Haryana India, for providing necessary facilities to conduct this study. The authors also acknowledge the sample analysis for FTIR at Central Instrumentation Laboratory (CIL), DCRUST Murthal Sonipat India, DNA sequencing at Eurofins Genomics India Pvt Ltd, Advanced Instrumentation Research Facility (AIRF), JNU New Delhi, India for GC-MS analysis. S. Chopra, also wishes to thank UGC, New Delhi India, for providing a research assistantship in the form RGNF fellowship. Authors are thankful to Editor/Reviewers for suggestions that has improved the the manuscript.Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsAll authors contributed to the study conception and design. The material preparation, data collection and analysis were performed by SC and DK. The first draft of the manuscript was written by SC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. DK supervised this research.Ethics approvalNot applicable.Data availability statementThe 16S rRNA gene sequence data of the paracetamol degrading Bacillus pumilus strain PYP-2 was deposited to National Centre of Biotechnology Information (NCBI) GenBank with accession number MN74432","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135830904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery of antioxidative phenolic compounds by the valorization of rice biomass under the influence of lignocellulolytic enzymes 在木质纤维素水解酶的作用下,通过水稻生物量的增值回收抗氧化酚类化合物
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-09-25 DOI: 10.1080/10242422.2023.2257835
Kumar Shankar, R. V. Beladhadi, S. K. Jayalakshmi, Kuruba Sreeramulu
{"title":"Recovery of antioxidative phenolic compounds by the valorization of rice biomass under the influence of lignocellulolytic enzymes","authors":"Kumar Shankar, R. V. Beladhadi, S. K. Jayalakshmi, Kuruba Sreeramulu","doi":"10.1080/10242422.2023.2257835","DOIUrl":"https://doi.org/10.1080/10242422.2023.2257835","url":null,"abstract":"AbstractThe present work aimed to optimize the recovery of antioxidative phenolic compounds from steam treated and untreated rice biomass (rice bran and rice straw) by the influence of lignocellulolytic enzymes of Burkholderia sp SMB1. The optimization of extraction was carried out by response surface methodology targeting to maximize phenolic release. These compounds were separated from the extracts using charcoal and un-utilized hydrolysed rice bran wastes and analysed for antioxidant properties. 10% (w/v) rice biomass with 60 mg of enzyme loadings (mg of protein in crude enzyme extract) at 40 °C, pH 7 for 30 min. Ferulic acid, gallic acid, coumaric acid, syringic acid, caffeic acid, epicatechin and kaemferol were identified by HPLC in both rice biomass extracts. Maximum total phenolics (83.35 mg GAE/100 g), total flavonoid content (16.89 mg/100 g QE), total tannin content (78.69 mg/100 g TAE) and antioxidant properties viz., 87.68% for ABTS, 77.11% for DPPH and 0.82 absorbance for FRAP was obtained for steam treated rice bran followed by rice straw. This work signifies the biomass transformation into phenolics possessing antioxidant nature under simple extraction process. It not only favours waste management process but also increases the income to agriculture sector.Keywords: Rice biomassBurkholderia sp SMB1lignocellulolytic enzymesphenolics extractionnatural antioxidants Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe authors are thankful to Department of Biotechnology (DBT), New Delhi and University Grants Commission (UGC SAP DRS-II), New Delhi, Government of India, for funding this work in the form of project. The author Kumar Shankar also acknowledge CSIR, New Delhi, India for funding in the form of CSIR-SRF direct (File No: 09/450(0046)/2020-EMR-I).","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135864039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covalent immobilization of recombinant L-asparaginase from Geobacillus kaustophilus on ReliZyme supports for mitigation of acrylamide kaustophilus地杆菌重组l -天冬酰胺酶在ReliZyme载体上的共价固定化研究
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-09-15 DOI: 10.1080/10242422.2023.2257351
F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim
{"title":"Covalent immobilization of recombinant L-asparaginase from <i>Geobacillus kaustophilus</i> on ReliZyme supports for mitigation of acrylamide","authors":"F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim","doi":"10.1080/10242422.2023.2257351","DOIUrl":"https://doi.org/10.1080/10242422.2023.2257351","url":null,"abstract":"AbstractIn this study, a new recombinant L-asparaginase from Geobacillus kaustophilus was covalently immobilized on ReliZyme EA403 (Relizyme/EA@GkASNase) and ReliZyme HA403 (Relizyme/HA@GkASNase) supports, and the free and immobilized L-asparaginases were used for their acrylamide mitigation performances in a food model system. The immobilization was confirmed by fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The optimum pH was determined as 8.5 for all the free and immobilized L-asparaginase samples. The optimum temperature was determined as 55 °C for the free enzyme and 60 °C for both the immobilized samples. The thermal stability of L-asparaginase was increased by 17.6 and 37.2 folds at 60 °C for Relizyme/EA@GkASNase and Relizyme/HA@GkASNase, respectively. Relizyme/EA@GkASNase and Relizyme/HA@GkASNase showed 16% and 43% of the catalytic efficiency of free GkASNase. The acrylamide mitigation performances of free and immobilized L-asparaginase samples were investigated using the L-asparagine–starch food model system and the formed acrylamide was completely mitigated in 1 h for all the L-asparaginase samples. Both the immobilized L-asparaginase samples retained at least 80% of their activities after five reuses. Hence, the immobilized GkASNase preparations can be potentially used in heat-treated food industries to remove acrylamide.Keywords: Geobacillus kaustophilusL-asparaginaseReliZymeacrylamide mitigation Disclosure statementAll authors declare that they have no conflict of interest.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135396708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing lipases reactivity in benzylic acetates hydrolysis: impact of kosmotropic salts under non-conventional conditions 增强脂肪酶在醋酸苄酯水解中的反应性:异向性盐在非常规条件下的影响
4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-09-13 DOI: 10.1080/10242422.2023.2256931
Nabila Braia, Farida Larit, Mounia Merabet-Khelassi
{"title":"Enhancing lipases reactivity in benzylic acetates hydrolysis: impact of kosmotropic salts under non-conventional conditions","authors":"Nabila Braia, Farida Larit, Mounia Merabet-Khelassi","doi":"10.1080/10242422.2023.2256931","DOIUrl":"https://doi.org/10.1080/10242422.2023.2256931","url":null,"abstract":"The effect of four kosmotropic salts additives, namely Na2CO3, Na2SO4, Na2HPO4, and NaCl, on the reactivity and selectivity of immobilized Candida antarctica lipase B (CAL-B) and a free lipase of Pseudomonas cepacia (PCL) during the hydrolysis of rac-4-(1-methoxyphenyl) ethyl and rac − 1-phenyl ethyl acetates (1a-2a) was investigated in this study. The study was carried out in two different mediums: non-aqueous conditions and in low water content media. The impact of the anionic counter-ions was examined in four solvents: nonpolar, semipolar, protic, and aprotic, with and without the aforementioned salts. In non-aqueous media, the addition of Na2CO3 significantly enhanced CAL-B hydrolysis rates, resulting in a conversion of 50% for 1a and 44% for 2a, with high enantioselectivities (E > 200). These effects were independent of the solvent hydrophobicity. In contrast, PCL required the presence of external water for effective hydrolysis of both acetates. The addition of salt additives had an adverse impact on PCL activity during the hydrolysis of 1a in hexane, toluene, and TBME solvents. However, when 2M2B was used, the inclusion of salt additives had a notable positive effect on the conversion rates, except for NaCl, which resulted in a lower conversion rate with a value of 15.5%. The presence of Na2CO3 improved the conversion rate during the hydrolysis of 2a in both hexane and TBME. Na2HPO4 further enhanced the conversion rate, reaching 44% in TBME. However, in 2M2B solvent, the addition of Na2HPO4 significantly reduced the enantioselectivity.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135741344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immobilization of fungal α-galactosidase on magnetic nanoparticles and hydrolysis of raffinose family oligosaccharides (RFO) in soymilk 磁性纳米颗粒固定化真菌α-半乳糖苷酶及豆浆中棉子糖家族寡糖(RFO)的水解研究
IF 1.8 4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-08-24 DOI: 10.1080/10242422.2023.2247516
Purvi Bangoria, S. Chaki, A. Shah
{"title":"Immobilization of fungal α-galactosidase on magnetic nanoparticles and hydrolysis of raffinose family oligosaccharides (RFO) in soymilk","authors":"Purvi Bangoria, S. Chaki, A. Shah","doi":"10.1080/10242422.2023.2247516","DOIUrl":"https://doi.org/10.1080/10242422.2023.2247516","url":null,"abstract":"","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47094572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hexavalent chromium detoxification by haloalkaliphilic Nesterenkonia sp strain NRC-Y immobilized in different matrices 不同基质固定化嗜盐Nesterenkonia菌株NRC-Y对六价铬的解毒作用
IF 1.8 4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-08-23 DOI: 10.1080/10242422.2023.2248336
D. Maany, M. Wahba, Mohamed I. Abo-Alkasem, M. El-Abd, A. Ibrahim
{"title":"Hexavalent chromium detoxification by haloalkaliphilic Nesterenkonia sp strain NRC-Y immobilized in different matrices","authors":"D. Maany, M. Wahba, Mohamed I. Abo-Alkasem, M. El-Abd, A. Ibrahim","doi":"10.1080/10242422.2023.2248336","DOIUrl":"https://doi.org/10.1080/10242422.2023.2248336","url":null,"abstract":"","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47940561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and screening of keratinolytic bacteria from feather dumping soil near in Lucknow and Kanpur city, North region of Indian 印度北部勒克瑙和坎普尔市附近羽毛倾倒土壤中角化细菌的分离和筛选
IF 1.8 4区 生物学
Biocatalysis and Biotransformation Pub Date : 2023-08-02 DOI: 10.1080/10242422.2023.2235053
Latafat, Mohammed Haris Siddiqui, Ashish, Archana Vimal, Prachi Bhargava
{"title":"Isolation and screening of keratinolytic bacteria from feather dumping soil near in Lucknow and Kanpur city, North region of Indian","authors":"Latafat, Mohammed Haris Siddiqui, Ashish, Archana Vimal, Prachi Bhargava","doi":"10.1080/10242422.2023.2235053","DOIUrl":"https://doi.org/10.1080/10242422.2023.2235053","url":null,"abstract":"<p><b>Abstract</b></p><h3>Background </h3><p>Keratinases are proteolytic enzymes that have the capability of degrading insoluble keratin substrates. LS4, LS5, and KS3 were newly isolated strains showing ability to hydrolyze keratins and keratin based products.</p><h3>Objective </h3><p>In this study, different bacterial strains were isolated from soil, screened for protease and keratinase production, and the best isolates were identified.</p><h3>Methods </h3><p>Serial dilution and plating method were used for isolation of pure bacterial culture. Isolated, 48 strains were screened, and their feather degrading ability on feather meal agar plates and keratin azure-based agar. The proteolytic activity of the isolates was also screened on casein agar.</p><h3>Results </h3><p>Three strains; LS4, LS5, and KS3 shows keratinolytic activity that reveal the keratinase enzyme on medium; feather meal agar, keratin azure agar, and casein agar. Among all the three strains (LS4, LS5, and KS3), KS3 show largest inhibition zone that show maximum enzymatic activity. For its characterization 16S RNA was performed, sequence KS3 was submitted to GenBank and was identified as <i>Bacillus tropicus</i> KS3. Newly isolated strain <i>B. tropicus</i> KS3 showed the keratinase production and highest keratinase activity (35.06 ± 2.5 U/ml). <i>B. tropicus</i> KS3 also show the highest degradation of feather efficiently showed 84% of whole chicken feather biodegradation at 37 °C within 15 days among all the isolated strains.</p><h3>Conclusion </h3><p>Keratinase enzyme possesses a wide range of potential applications in the bioremediation of feather waste and bio-fertilizer in agricultural land. The industry demands a better source of this enzyme due to its multivariate application and huge market demand. In the present study, a novel keratinase-producing bacteria was isolated and characterized as <i>Bacillus tropicus</i> KS3 from poultry waste contamination soil.</p>","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信