F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim
{"title":"Covalent immobilization of recombinant L-asparaginase from <i>Geobacillus kaustophilus</i> on ReliZyme supports for mitigation of acrylamide","authors":"F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim","doi":"10.1080/10242422.2023.2257351","DOIUrl":null,"url":null,"abstract":"AbstractIn this study, a new recombinant L-asparaginase from Geobacillus kaustophilus was covalently immobilized on ReliZyme EA403 (Relizyme/EA@GkASNase) and ReliZyme HA403 (Relizyme/HA@GkASNase) supports, and the free and immobilized L-asparaginases were used for their acrylamide mitigation performances in a food model system. The immobilization was confirmed by fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The optimum pH was determined as 8.5 for all the free and immobilized L-asparaginase samples. The optimum temperature was determined as 55 °C for the free enzyme and 60 °C for both the immobilized samples. The thermal stability of L-asparaginase was increased by 17.6 and 37.2 folds at 60 °C for Relizyme/EA@GkASNase and Relizyme/HA@GkASNase, respectively. Relizyme/EA@GkASNase and Relizyme/HA@GkASNase showed 16% and 43% of the catalytic efficiency of free GkASNase. The acrylamide mitigation performances of free and immobilized L-asparaginase samples were investigated using the L-asparagine–starch food model system and the formed acrylamide was completely mitigated in 1 h for all the L-asparaginase samples. Both the immobilized L-asparaginase samples retained at least 80% of their activities after five reuses. Hence, the immobilized GkASNase preparations can be potentially used in heat-treated food industries to remove acrylamide.Keywords: Geobacillus kaustophilusL-asparaginaseReliZymeacrylamide mitigation Disclosure statementAll authors declare that they have no conflict of interest.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10242422.2023.2257351","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIn this study, a new recombinant L-asparaginase from Geobacillus kaustophilus was covalently immobilized on ReliZyme EA403 (Relizyme/EA@GkASNase) and ReliZyme HA403 (Relizyme/HA@GkASNase) supports, and the free and immobilized L-asparaginases were used for their acrylamide mitigation performances in a food model system. The immobilization was confirmed by fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The optimum pH was determined as 8.5 for all the free and immobilized L-asparaginase samples. The optimum temperature was determined as 55 °C for the free enzyme and 60 °C for both the immobilized samples. The thermal stability of L-asparaginase was increased by 17.6 and 37.2 folds at 60 °C for Relizyme/EA@GkASNase and Relizyme/HA@GkASNase, respectively. Relizyme/EA@GkASNase and Relizyme/HA@GkASNase showed 16% and 43% of the catalytic efficiency of free GkASNase. The acrylamide mitigation performances of free and immobilized L-asparaginase samples were investigated using the L-asparagine–starch food model system and the formed acrylamide was completely mitigated in 1 h for all the L-asparaginase samples. Both the immobilized L-asparaginase samples retained at least 80% of their activities after five reuses. Hence, the immobilized GkASNase preparations can be potentially used in heat-treated food industries to remove acrylamide.Keywords: Geobacillus kaustophilusL-asparaginaseReliZymeacrylamide mitigation Disclosure statementAll authors declare that they have no conflict of interest.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.