Enhancing lipases reactivity in benzylic acetates hydrolysis: impact of kosmotropic salts under non-conventional conditions

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nabila Braia, Farida Larit, Mounia Merabet-Khelassi
{"title":"Enhancing lipases reactivity in benzylic acetates hydrolysis: impact of kosmotropic salts under non-conventional conditions","authors":"Nabila Braia, Farida Larit, Mounia Merabet-Khelassi","doi":"10.1080/10242422.2023.2256931","DOIUrl":null,"url":null,"abstract":"The effect of four kosmotropic salts additives, namely Na2CO3, Na2SO4, Na2HPO4, and NaCl, on the reactivity and selectivity of immobilized Candida antarctica lipase B (CAL-B) and a free lipase of Pseudomonas cepacia (PCL) during the hydrolysis of rac-4-(1-methoxyphenyl) ethyl and rac − 1-phenyl ethyl acetates (1a-2a) was investigated in this study. The study was carried out in two different mediums: non-aqueous conditions and in low water content media. The impact of the anionic counter-ions was examined in four solvents: nonpolar, semipolar, protic, and aprotic, with and without the aforementioned salts. In non-aqueous media, the addition of Na2CO3 significantly enhanced CAL-B hydrolysis rates, resulting in a conversion of 50% for 1a and 44% for 2a, with high enantioselectivities (E > 200). These effects were independent of the solvent hydrophobicity. In contrast, PCL required the presence of external water for effective hydrolysis of both acetates. The addition of salt additives had an adverse impact on PCL activity during the hydrolysis of 1a in hexane, toluene, and TBME solvents. However, when 2M2B was used, the inclusion of salt additives had a notable positive effect on the conversion rates, except for NaCl, which resulted in a lower conversion rate with a value of 15.5%. The presence of Na2CO3 improved the conversion rate during the hydrolysis of 2a in both hexane and TBME. Na2HPO4 further enhanced the conversion rate, reaching 44% in TBME. However, in 2M2B solvent, the addition of Na2HPO4 significantly reduced the enantioselectivity.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10242422.2023.2256931","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of four kosmotropic salts additives, namely Na2CO3, Na2SO4, Na2HPO4, and NaCl, on the reactivity and selectivity of immobilized Candida antarctica lipase B (CAL-B) and a free lipase of Pseudomonas cepacia (PCL) during the hydrolysis of rac-4-(1-methoxyphenyl) ethyl and rac − 1-phenyl ethyl acetates (1a-2a) was investigated in this study. The study was carried out in two different mediums: non-aqueous conditions and in low water content media. The impact of the anionic counter-ions was examined in four solvents: nonpolar, semipolar, protic, and aprotic, with and without the aforementioned salts. In non-aqueous media, the addition of Na2CO3 significantly enhanced CAL-B hydrolysis rates, resulting in a conversion of 50% for 1a and 44% for 2a, with high enantioselectivities (E > 200). These effects were independent of the solvent hydrophobicity. In contrast, PCL required the presence of external water for effective hydrolysis of both acetates. The addition of salt additives had an adverse impact on PCL activity during the hydrolysis of 1a in hexane, toluene, and TBME solvents. However, when 2M2B was used, the inclusion of salt additives had a notable positive effect on the conversion rates, except for NaCl, which resulted in a lower conversion rate with a value of 15.5%. The presence of Na2CO3 improved the conversion rate during the hydrolysis of 2a in both hexane and TBME. Na2HPO4 further enhanced the conversion rate, reaching 44% in TBME. However, in 2M2B solvent, the addition of Na2HPO4 significantly reduced the enantioselectivity.
增强脂肪酶在醋酸苄酯水解中的反应性:异向性盐在非常规条件下的影响
研究了Na2CO3、Na2SO4、Na2HPO4和NaCl对固定化南极假单胞菌脂肪酶B (CAL-B)和马铃薯假单胞菌游离脂肪酶(PCL)水解rac-4-(1-甲氧基苯基)乙酯和rac- 1-苯基乙酯(1a-2a)的反应活性和选择性的影响。该研究在两种不同的介质中进行:非水条件和低含水量介质。阴离子反离子的影响在四种溶剂中进行了研究:非极性、半极性、正离子和非正离子,有和没有上述盐。在非水介质中,Na2CO3的加入显著提高了CAL-B的水解率,导致1a的转化率为50%,2a的转化率为44%,具有很高的对映选择性(E > 200)。这些影响与溶剂的疏水性无关。相反,PCL需要外部水的存在才能有效地水解两种醋酸酯。盐添加剂的加入对1a在己烷、甲苯和TBME溶剂中水解时PCL的活性有不利影响。而在使用2M2B时,除NaCl外,其他盐添加剂对转化率均有显著的正向影响,其转化率较低,为15.5%。Na2CO3的存在提高了2a在己烷和TBME中水解的转化率。Na2HPO4进一步提高了转化率,在TBME中达到44%。然而,在2M2B溶剂中,Na2HPO4的加入显著降低了对映体选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and Biotransformation
Biocatalysis and Biotransformation 生物-生化与分子生物学
CiteScore
4.40
自引率
5.60%
发文量
37
审稿时长
3 months
期刊介绍: Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species. Papers are published in the areas of: Mechanistic principles Kinetics and thermodynamics of biocatalytic processes Chemical or genetic modification of biocatalysts Developments in biocatalyst''s immobilization Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes Biomimetic systems Environmental applications of biocatalysis Metabolic engineering Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信