kaustophilus地杆菌重组l -天冬酰胺酶在ReliZyme载体上的共价固定化研究

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim
{"title":"kaustophilus地杆菌重组l -天冬酰胺酶在ReliZyme载体上的共价固定化研究","authors":"F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim","doi":"10.1080/10242422.2023.2257351","DOIUrl":null,"url":null,"abstract":"AbstractIn this study, a new recombinant L-asparaginase from Geobacillus kaustophilus was covalently immobilized on ReliZyme EA403 (Relizyme/EA@GkASNase) and ReliZyme HA403 (Relizyme/HA@GkASNase) supports, and the free and immobilized L-asparaginases were used for their acrylamide mitigation performances in a food model system. The immobilization was confirmed by fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The optimum pH was determined as 8.5 for all the free and immobilized L-asparaginase samples. The optimum temperature was determined as 55 °C for the free enzyme and 60 °C for both the immobilized samples. The thermal stability of L-asparaginase was increased by 17.6 and 37.2 folds at 60 °C for Relizyme/EA@GkASNase and Relizyme/HA@GkASNase, respectively. Relizyme/EA@GkASNase and Relizyme/HA@GkASNase showed 16% and 43% of the catalytic efficiency of free GkASNase. The acrylamide mitigation performances of free and immobilized L-asparaginase samples were investigated using the L-asparagine–starch food model system and the formed acrylamide was completely mitigated in 1 h for all the L-asparaginase samples. Both the immobilized L-asparaginase samples retained at least 80% of their activities after five reuses. Hence, the immobilized GkASNase preparations can be potentially used in heat-treated food industries to remove acrylamide.Keywords: Geobacillus kaustophilusL-asparaginaseReliZymeacrylamide mitigation Disclosure statementAll authors declare that they have no conflict of interest.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent immobilization of recombinant L-asparaginase from <i>Geobacillus kaustophilus</i> on ReliZyme supports for mitigation of acrylamide\",\"authors\":\"F. İnci Özdemir, Burcu Karaaslan, Ahmet Tülek, Deniz Yildirim\",\"doi\":\"10.1080/10242422.2023.2257351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this study, a new recombinant L-asparaginase from Geobacillus kaustophilus was covalently immobilized on ReliZyme EA403 (Relizyme/EA@GkASNase) and ReliZyme HA403 (Relizyme/HA@GkASNase) supports, and the free and immobilized L-asparaginases were used for their acrylamide mitigation performances in a food model system. The immobilization was confirmed by fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The optimum pH was determined as 8.5 for all the free and immobilized L-asparaginase samples. The optimum temperature was determined as 55 °C for the free enzyme and 60 °C for both the immobilized samples. The thermal stability of L-asparaginase was increased by 17.6 and 37.2 folds at 60 °C for Relizyme/EA@GkASNase and Relizyme/HA@GkASNase, respectively. Relizyme/EA@GkASNase and Relizyme/HA@GkASNase showed 16% and 43% of the catalytic efficiency of free GkASNase. The acrylamide mitigation performances of free and immobilized L-asparaginase samples were investigated using the L-asparagine–starch food model system and the formed acrylamide was completely mitigated in 1 h for all the L-asparaginase samples. Both the immobilized L-asparaginase samples retained at least 80% of their activities after five reuses. Hence, the immobilized GkASNase preparations can be potentially used in heat-treated food industries to remove acrylamide.Keywords: Geobacillus kaustophilusL-asparaginaseReliZymeacrylamide mitigation Disclosure statementAll authors declare that they have no conflict of interest.\",\"PeriodicalId\":8824,\"journal\":{\"name\":\"Biocatalysis and Biotransformation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and Biotransformation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10242422.2023.2257351\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10242422.2023.2257351","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究以kaustophilus Geobacillus重组l -天门酰胺酶为载体,将其共价固定在ReliZyme EA403 (ReliZyme /EA@GkASNase)和ReliZyme HA403 (ReliZyme /HA@GkASNase)载体上,并在食品模型体系中研究了游离和固定的l -天门酰胺酶的丙烯酰胺降解性能。通过傅里叶变换红外光谱、扫描电镜和透射电镜分析证实了固定作用。游离和固定l -天冬酰胺酶样品的最适pH均为8.5。游离酶的最佳温度为55℃,两种固定化样品的最佳温度均为60℃。Relizyme/EA@GkASNase和Relizyme/HA@GkASNase的l -天冬酰胺酶在60℃时的热稳定性分别提高了17.6倍和37.2倍。Relizyme/EA@GkASNase和Relizyme/HA@GkASNase对游离GkASNase的催化效率分别为16%和43%。采用l -天冬酰胺-淀粉食物模型体系考察了游离和固定化l -天冬酰胺酶样品的丙烯酰胺降解性能,结果表明,所有l -天冬酰胺酶样品在1 h内形成的丙烯酰胺均被完全降解。两种固定的l -天冬酰胺酶样品在重复使用五次后仍保持至少80%的活性。因此,固定化GkASNase制剂可以潜在地用于热处理食品工业中去除丙烯酰胺。关键词:考氏地obacillus kaustophilusl -天冬酰胺酶elizyymeacrylamide mitigation披露声明所有作者声明无利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covalent immobilization of recombinant L-asparaginase from Geobacillus kaustophilus on ReliZyme supports for mitigation of acrylamide
AbstractIn this study, a new recombinant L-asparaginase from Geobacillus kaustophilus was covalently immobilized on ReliZyme EA403 (Relizyme/EA@GkASNase) and ReliZyme HA403 (Relizyme/HA@GkASNase) supports, and the free and immobilized L-asparaginases were used for their acrylamide mitigation performances in a food model system. The immobilization was confirmed by fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The optimum pH was determined as 8.5 for all the free and immobilized L-asparaginase samples. The optimum temperature was determined as 55 °C for the free enzyme and 60 °C for both the immobilized samples. The thermal stability of L-asparaginase was increased by 17.6 and 37.2 folds at 60 °C for Relizyme/EA@GkASNase and Relizyme/HA@GkASNase, respectively. Relizyme/EA@GkASNase and Relizyme/HA@GkASNase showed 16% and 43% of the catalytic efficiency of free GkASNase. The acrylamide mitigation performances of free and immobilized L-asparaginase samples were investigated using the L-asparagine–starch food model system and the formed acrylamide was completely mitigated in 1 h for all the L-asparaginase samples. Both the immobilized L-asparaginase samples retained at least 80% of their activities after five reuses. Hence, the immobilized GkASNase preparations can be potentially used in heat-treated food industries to remove acrylamide.Keywords: Geobacillus kaustophilusL-asparaginaseReliZymeacrylamide mitigation Disclosure statementAll authors declare that they have no conflict of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocatalysis and Biotransformation
Biocatalysis and Biotransformation 生物-生化与分子生物学
CiteScore
4.40
自引率
5.60%
发文量
37
审稿时长
3 months
期刊介绍: Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species. Papers are published in the areas of: Mechanistic principles Kinetics and thermodynamics of biocatalytic processes Chemical or genetic modification of biocatalysts Developments in biocatalyst''s immobilization Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes Biomimetic systems Environmental applications of biocatalysis Metabolic engineering Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信