{"title":"Advancements in the Realm of Structural Engineering for Sodium-Ion Batteries via Elemental Doping: A Focus on P2-Phase Nickel–Manganese Layered Oxides","authors":"Weipeng Li, Haihan Zhang, Liang Xie, Zhiyang Fan, Taifan Yang, Weibo Hua, Kang Yang, Chengyong Shu, Yongliang Ma, Yuping Wu, Wei Tang","doi":"10.1002/bte2.20240052","DOIUrl":"https://doi.org/10.1002/bte2.20240052","url":null,"abstract":"<p>In recent decades, lithium-ion batteries (LIBs) have been widely adopted for large-scale energy storage due to their long cycle life and high energy density. However, the high cost and limited natural abundance of lithium highlight the urgent need to develop alternative devices, such as sodium-ion batteries (SIBs), which utilize abundant and readily available resources. Among SIB cathode materials, P2-phase Ni–Mn materials have emerged as commercially viable candidates because of their high operating voltage, good specific capacity, excellent sodium-ion conductivity, and robust stability under environmental conditions. Nevertheless, the Jahn–Teller effect triggered by high-voltage phase transitions, Na<sup>+</sup>/vacancy ordering, and the presence of Mn<sup>3+</sup> at low voltages collectively lead to structural degradation and performance decline during cycling. By varying the macroscopic structural design and surface coating, elemental doping introduces one or more ions at the atomic scale, adjusting the valence states and reducing the band gap. This effectively alters the electronic structure and the intrinsic lattice of the cathode material, thereby accelerating reaction kinetics and yielding high-performance material characteristics. This review delves into the research advancements pertaining to tailored structural engineering strategies to address these challenges for P2-phase Ni–Mn layered oxides.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-27DOI: 10.1002/bte2.20240055
Protity Saha, Md. Zahidul Islam, Syed Shaheen Shah, M. Nasiruzzaman Shaikh, T. Maiyalagan, Md. Abdul Aziz, A. J. Saleh Ahammad
{"title":"Harnessing the Power of Marine Biomass-Derived Carbon for Electrochemical Energy Storage","authors":"Protity Saha, Md. Zahidul Islam, Syed Shaheen Shah, M. Nasiruzzaman Shaikh, T. Maiyalagan, Md. Abdul Aziz, A. J. Saleh Ahammad","doi":"10.1002/bte2.20240055","DOIUrl":"https://doi.org/10.1002/bte2.20240055","url":null,"abstract":"<p>Marine biomass presents a promising and sustainable pathway for advancing electrochemical energy storage (EES) technologies. This review provides a comprehensive, state-of-the-art examination of marine biomass-derived carbon as a high-performance electrode material for EES devices. The global abundance and distribution of marine biomass are discussed, followed by a detailed investigation into the chemical composition of various aquatic organisms. Key conventional synthesis methods for converting marine biomass into carbon are critically analyzed, emphasizing strategies to enhance electrochemical performance. Diverse applications of marine biomass-derived carbon in EES are explored, offering an in-depth evaluation of its electrochemical activity and mechanical properties in relation to structural variations. A dedicated section addresses the “Technology to Market” transition, presenting a strategic overview of the commercial potential of this material. Lastly, the review identifies current challenges and future opportunities, emphasizing the need for continued research into both structural innovations and scalable solutions to advance sustainable energy storage systems, addressing critical environmental and economic issues.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-24DOI: 10.1002/bte2.20240033
Chenxi Ye, Peiyuan Guo, Xiya Chen, Zining Zhang, Yudong Guo, Zhenjun Chen, Huakang Yang, Dongxiang Luo, Xiao Liu
{"title":"Highly Efficient and Stable Potassium-Doped g-C3N4/Zn0.5Cd0.5S Quantum Dot Heterojunction Photocatalyst for Hydrogen Evolution","authors":"Chenxi Ye, Peiyuan Guo, Xiya Chen, Zining Zhang, Yudong Guo, Zhenjun Chen, Huakang Yang, Dongxiang Luo, Xiao Liu","doi":"10.1002/bte2.20240033","DOIUrl":"https://doi.org/10.1002/bte2.20240033","url":null,"abstract":"<p>The advancement of efficient and robust photocatalysts for water splitting is pivotal for the sustainable production of clean hydrogen energy. This study introduces a novel photocatalyst, synthesized by integrating 0D Zn<sub>0.5</sub>Cd<sub>0.5</sub>S quantum dots (ZCS QDs) onto 2D K<sup>+</sup>-doped graphitic carbon nitride (K-CN) microribbons, via an in-situ hydrothermal growth method. A comprehensive characterization was performed to assess the optical characteristics, structural attributes, and charge transfer efficacy of the prepared photocatalysts. Our findings reveal that the incorporation of K<sup>+</sup> ions effectively modulates the bandgap and valence band positions of g-C<sub>3</sub>N<sub>4</sub>, facilitating an optimal energy level alignment with ZCS QDs. Moreover, the integration of ZCS QDs improves the photon capture ability and concurrently diminishes the recombination rate of photogenerated charge carriers. The optimized ZCS 51%/K-CN photocatalyst demonstrates a promising simulated sunlight-driven hydrogen production rate of 9.606 mmol·h<sup>−1</sup>·g<sup>−1</sup>, surpassing that of pristine ZCS QDs by nearly three times, without the need for noble metal co-catalysts. Most notably, the photocatalyst maintains its hydrogen evolution performance consistently over five photocatalytic cycles, underscoring its stability. The remarkable photocatalytic activity is primarily ascribed to the formation of a type-II heterojunction between K-CN and ZCS QDs, which enhances charge separation and transfer. This research represents a significant step forward in the design of heterojunction photocatalysts by merging QDs with g-C<sub>3</sub>N<sub>4</sub>, offering a highly effective and durable solution for photocatalytic hydrogen production.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-20DOI: 10.1002/bte2.20240070
Sungwoo Kim, Md Amir Sohel, Ji Chan Kim, Sung Oh Cho
{"title":"Electron-Irradiated Montmorillonite/Polyethylene Composite Separator for High-Performance Lithium-Ion Battery","authors":"Sungwoo Kim, Md Amir Sohel, Ji Chan Kim, Sung Oh Cho","doi":"10.1002/bte2.20240070","DOIUrl":"https://doi.org/10.1002/bte2.20240070","url":null,"abstract":"<p>Separators play a significant role in the safety and performance of lithium-ion batteries. In this study, composite separators were fabricated using montmorillonite (MMT) as a filler in a high-density polyethylene (HDPE) matrix, followed by electron irradiation to enhance the safety and performance of separator. Electron irradiation induces chemical bonds by crosslinking between HDPE chains, also between the MMT and HDPE. MMT features a two-dimensional layered structure with a high surface area, providing abundant crosslinking sites. MMT is treated with a silane coupling agent, which induces layer exfoliation. The exfoliation increases the surface area of MMT, thereby providing more crosslinking sites. Additionally, the surface modification of MMT enhances its affinity with HDPE, leading to better dispersion of MMT within the HDPE matrix. Simultaneously, electron irradiation in an air atmosphere generates polar functional groups, improving the electrolyte affinity of the separator. Consequently, the safety of the MMT composite separator was significantly enhanced, exhibiting a high puncture strength of 0.52 N μm<sup>−1</sup> and a thermal shrinkage rate of 21.4% at 135°C for 30 min. Li//LCO cells using the composite separator demonstrated superb cycle stability with a discharge retention of 98.7% and a coulombic efficiency of 99.6% after 200 cycles at 0.5 C, and exhibited rate capability maintaining 74.5% of the capacity at 20 C compared to 0.5 C.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Additives With Phenyl and Acid Anhydride Functional Groups on the Wide Temperature Operation Performance of LiNi0.8Co0.1Mn0.1O2||SiO/Graphite Pouch Cells","authors":"Chengyun Wang, Jin Chen, Yaowei Feng, Xiuqin Deng, Xiaoxian Pang, Hanbo Zou, Wei Yang, Shengzhou Chen, Xijun Xu","doi":"10.1002/bte2.20240042","DOIUrl":"https://doi.org/10.1002/bte2.20240042","url":null,"abstract":"<p>High-nickel LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode paired with silicon-based graphite (SiO/Gr) is pivotal for enhancing the energy density of lithium-ion batteries (LIBs). However, the high reactivity of NCM811 with the electrolyte and the volumetric expansion issues associated with SiO/Gr pose significant challenges to their practical application. To settle these issues, we explore the impact of additives with phenyl and acid anhydride moieties on the performance of NCM811‖SiO/Gr pouch cells across a wide temperature range of −20°C~60°C. Acid anhydride additives are capable of diminishing the internal resistance in NCM811‖SiO/Gr pouch cells, as well as curbing gas evolution and thickness increase during the operational phase. Notably, the batteries enriched with citraconic anhydride (CAn) and succinic anhydride (SAn) additives after 120 cycles at 45°C demonstrated enhanced capacity retention from 83.2% to 88.1% and 85.5%, respectively. Intriguingly, the inclusion of phenyl-containing additives in the electrolyte was found to be advantageous for NCM811‖SiO/Gr pouch cells' low-temperature performance. Furthermore, neither type of functional group significantly enhanced performance at room conditions. Consequently, the combination of additives is necessary to fulfill the stringent requirements of LIBs for extreme environment applications. This work guides designing composite electrolytes for high energy density wide temperature operation LIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-18DOI: 10.1002/bte2.20240046
Xiao Zhang, Yanhuai Ding
{"title":"Research Progress on the Application of MOF Materials in Lithium-Ion Batteries","authors":"Xiao Zhang, Yanhuai Ding","doi":"10.1002/bte2.20240046","DOIUrl":"https://doi.org/10.1002/bte2.20240046","url":null,"abstract":"<p>Lithium-ion batteries (LIBs) have established themselves as the preferred power sources for both pure electric and hybrid vehicles, attributable to their exceptional characteristics, including prolonged cycle life, elevated energy density, and minimal self-discharge rates. Metal-organic frameworks (MOFs), as innovative functional molecular crystal materials, exhibit promising application prospects in LIBs. This paper provides a comprehensive overview of the latest advancements in the synthesis techniques and structural modulation of MOFs and their derivative materials. It particularly emphasizes a thorough exploration of the utilization of MOFs and their derivatives in the anode, cathode, and separators of LIBs. Additionally, this paper delves into the current obstacles encountered by MOFs in LIB applications and offers insights into their potential future development.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-18DOI: 10.1002/bte2.20240016
Mohammadhosein Safari
{"title":"A Perspective on the Battery Value Chain and the Future of Battery Electric Vehicles","authors":"Mohammadhosein Safari","doi":"10.1002/bte2.20240016","DOIUrl":"https://doi.org/10.1002/bte2.20240016","url":null,"abstract":"<p>Even the most conservative projections suggest that significantly higher demand for batteries in the transport sector is expected in the coming years. A relevant concern is the supply security of lithium-ion batteries, which has been raised and discussed in existing literature in the context of sustainability and the technological readiness of different parts of the battery value chain. However, an up-to-date analysis of this value chain is beneficial to spotlight the main current bottlenecks. This perspective article aims to make a worthwhile contribution in two respects: first, to encourage further research in the techno-economic aspects of lithium-ion and beyond battery chemistries; second, to aid investors and policymakers in the decision-making process paving the road for the realization of the sustainability goals in the transport sector.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining","authors":"Samrudh Devanahalli Bokkassam, Jegatha Nambi Krishnan","doi":"10.1002/bte2.20240022","DOIUrl":"https://doi.org/10.1002/bte2.20240022","url":null,"abstract":"<p>Lithium ion batteries (LIBs) have brought about a revolution in the electronics industry and are now almost a part of our everyday activities. They are on the verge of finding application in almost every electronic rechargeable device and have a bright future ahead. With the recent discovery of substantial reserves of lithium in India, along with the favourable government policies for the usage of electric vehicles (EVs), LIBs are expected to play a major role in meeting sustainable energy goals. Though LIBs have become a commercial success, they face many challenges, such as high cost of production, thermal runaway and overcharging, that might hamper their extensive use. Many research studies have been conducted regarding the operation of LIB, with safety being a concern. With rapid technology development, going nanoscale for LIB production has become achievable and valuable as it has been reported to increase the shelf life of the battery. In this review, recycling of spent LIBs is discussed, as the extraction of the leftover lithium and other minerals is possible through recycling process. The advantages and drawbacks of deep-sea lithium mining have been discussed, as it is explored as an alternative to major lithium sources due to the rapid depletion of land mining sources. Its impact on the environment and the mineral market has been assessed. This review paper attempts to give an overview of all the vital characteristics of an LIB, such as life cycle, fast charging and overcharging, while covering strategies for overcoming challenges faced in the functioning of LIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-11-13DOI: 10.1002/bte2.20240035
Yujia Xue, Jinghao Huo, Xin Wang, Yuzhen Zhao
{"title":"ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors","authors":"Yujia Xue, Jinghao Huo, Xin Wang, Yuzhen Zhao","doi":"10.1002/bte2.20240035","DOIUrl":"https://doi.org/10.1002/bte2.20240035","url":null,"abstract":"<p>Over the past decade, the extensive consumption of finite energy resources has caused severe environmental pollution. Meanwhile, the promotion of renewable energy sources is limited by their intermittent and regional nature. Thus, developing effective energy storage and conversion technologies and devices holds considerable importance. Zinc-ion hybrid supercapacitors (ZISCs) merge the beneficial aspects of both supercapacitors and batteries, rendering them an exceptionally promising energy storage method. As an important cathode material for ZISCs, the tunnel structure MnO<sub>2</sub> has poor conductivity and structural stability. Herein, the Zn<sub>x</sub>MnO<sub>2</sub>/PPy (ZMOP) electrode materials are prepared by hydrothermal method. Doping with Zn<sup>2+</sup> is used to enhance its structural stability, while adding polypyrrole to improve its conductivity. Therefore, the fabricated ZMOP cathode presents superb specific capacity (0.1 A g<sup>−1</sup>, 156.4 mAh g<sup>−1</sup>) and remarkable cycle performance (82.6%, 5000 cycles, 0.2 A g<sup>−1</sup>). Furthermore, the assembled aqueous ZISCs with ZMOP cathode and PPy-derived porous carbon nanotube anode obtain a superb capacity of 109 F g<sup>−1</sup> at 0.1 A g<sup>−1</sup>. Meanwhile, at a power density of 867 W kg<sup>−1</sup>, the corresponding energy density can achieve 20 Wh kg<sup>−1</sup>. And over 5000 cycles at 0.2 A g<sup>−1</sup>, the cycle performance of ZISCs maintains at 86.4%, which exhibits excellent cycle stability. This suggests that ZMOP nanowires are potential cathode materials for superior-performance aqueous ZISCs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}