Hierarchically Assembled Mn2O3/Porous Graphene Electrodes Synthesized via High Speed and Continuous Laser-Scribing Strategy for High-Performance Microsupercapacitors
Sangjun Son, Jihong Kim, Sung Min Wi, Sungsan Kang, Younghyun Cho, Jong Bae Park, A-Rang Jang, Sangyeon Pak, Young-Woo Lee
{"title":"Hierarchically Assembled Mn2O3/Porous Graphene Electrodes Synthesized via High Speed and Continuous Laser-Scribing Strategy for High-Performance Microsupercapacitors","authors":"Sangjun Son, Jihong Kim, Sung Min Wi, Sungsan Kang, Younghyun Cho, Jong Bae Park, A-Rang Jang, Sangyeon Pak, Young-Woo Lee","doi":"10.1002/bte2.20240079","DOIUrl":null,"url":null,"abstract":"<p>Micro-supercapacitors (mSCs) have emerged as next-generation energy storage components suitable for portable, flexible, and eco-friendly electronic device system. In particular, electric double-layer (EDL) mSCs utilizing flexible graphene electrodes have gained significant attention due to their quick and efficient charge/discharge capabilities. Despite significant progress in fabricating mSCs, particularly through the development of laser-induced graphene (LIG) for creating 3D porous electrodes, challenges remain in increasing both energy and power densities. One promising strategy to address these challenges is the incorporation of pseudo-capacitive materials into the 3D graphene structure. However, conventional methods for embedding pseudo-capacitive materials often involve complex and additional labor-intensive steps to the manufacturing process. In this work, we introduce a high-speed mSC fabrication method (< 5 min) that employs a continuous laser-scribing process to directly integrate Mn<sub>2</sub>O<sub>3</sub>, a pseudo-capacitive material, onto LIG electrodes, forming hierarchical Mn<sub>2</sub>O<sub>3</sub>/LIG structure. By precisely controlling the fabrication parameter, this approach can significantly improve the electrochemical performance by optimizing the density and thickness of Mn<sub>2</sub>O<sub>3</sub>, leading to 550.5% increase in capacitance and energy density compared to the LIG electrode. Additionally, the mSCs exhibit outstanding cyclic (> 88% @ 20,000 cycles) and mechanical stability (@ bending radius of 5 mm), confirming their potential for seamless integration into electronic circuits. This innovation not only simplifies the production process of high-performance mSCs but also broadens their potential applications in sustainable and compact electronic device system.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-supercapacitors (mSCs) have emerged as next-generation energy storage components suitable for portable, flexible, and eco-friendly electronic device system. In particular, electric double-layer (EDL) mSCs utilizing flexible graphene electrodes have gained significant attention due to their quick and efficient charge/discharge capabilities. Despite significant progress in fabricating mSCs, particularly through the development of laser-induced graphene (LIG) for creating 3D porous electrodes, challenges remain in increasing both energy and power densities. One promising strategy to address these challenges is the incorporation of pseudo-capacitive materials into the 3D graphene structure. However, conventional methods for embedding pseudo-capacitive materials often involve complex and additional labor-intensive steps to the manufacturing process. In this work, we introduce a high-speed mSC fabrication method (< 5 min) that employs a continuous laser-scribing process to directly integrate Mn2O3, a pseudo-capacitive material, onto LIG electrodes, forming hierarchical Mn2O3/LIG structure. By precisely controlling the fabrication parameter, this approach can significantly improve the electrochemical performance by optimizing the density and thickness of Mn2O3, leading to 550.5% increase in capacitance and energy density compared to the LIG electrode. Additionally, the mSCs exhibit outstanding cyclic (> 88% @ 20,000 cycles) and mechanical stability (@ bending radius of 5 mm), confirming their potential for seamless integration into electronic circuits. This innovation not only simplifies the production process of high-performance mSCs but also broadens their potential applications in sustainable and compact electronic device system.