A Review of the Use of Chemical Stabilisation Methods for Lithium-Ion Batteries

Mark D. Williams-Wynn, Marcin H. Durski
{"title":"A Review of the Use of Chemical Stabilisation Methods for Lithium-Ion Batteries","authors":"Mark D. Williams-Wynn,&nbsp;Marcin H. Durski","doi":"10.1002/bte2.20240086","DOIUrl":null,"url":null,"abstract":"<p>The increasing amounts of end-of-life lithium-ion batteries (EOL LIBs) require novel and safe solutions allowing for the minimisation of health and environmental hazards. Arguably, the best approach to the problem of EOL LIBs is recycling and recovery of the metals contained within the cells. This allows the diversion of the EOL battery cells from the environment and the recovery of precious metals that can be reused in the manufacturing of new products, allowing the reduction of the requirements of virgin materials from the mining industry. The most significant hindrance to the recycling process of EOL LIBs is their unstable chemical nature and significant safety hazards related to opening the air-tight casings. To minimise these issues, the end-of-life cells must be stabilised in one of the few available ways. This review aims at a comprehensive presentation of the studied chemical methods of EOL LIB cell discharge and stabilisation. The advantages and disadvantages of the method and its variations are discussed based on the literature published to date. The literature review found that a significant number of authors make use of chemical stabilisation techniques without proper comprehension of the associated risks. Many authors focus solely on the cheapest and fastest way to stop a cell from producing an electrical charge without extra thought given to the downstream recycling processes of safety hazards related to the proposed stabilisation method. Only a few studies highlighted the risks and problems associated with chemical stabilisation techniques.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing amounts of end-of-life lithium-ion batteries (EOL LIBs) require novel and safe solutions allowing for the minimisation of health and environmental hazards. Arguably, the best approach to the problem of EOL LIBs is recycling and recovery of the metals contained within the cells. This allows the diversion of the EOL battery cells from the environment and the recovery of precious metals that can be reused in the manufacturing of new products, allowing the reduction of the requirements of virgin materials from the mining industry. The most significant hindrance to the recycling process of EOL LIBs is their unstable chemical nature and significant safety hazards related to opening the air-tight casings. To minimise these issues, the end-of-life cells must be stabilised in one of the few available ways. This review aims at a comprehensive presentation of the studied chemical methods of EOL LIB cell discharge and stabilisation. The advantages and disadvantages of the method and its variations are discussed based on the literature published to date. The literature review found that a significant number of authors make use of chemical stabilisation techniques without proper comprehension of the associated risks. Many authors focus solely on the cheapest and fastest way to stop a cell from producing an electrical charge without extra thought given to the downstream recycling processes of safety hazards related to the proposed stabilisation method. Only a few studies highlighted the risks and problems associated with chemical stabilisation techniques.

Abstract Image

锂离子电池化学稳定方法的研究进展
越来越多的报废锂离子电池(EOL lib)需要新颖、安全的解决方案,以最大限度地减少对健康和环境的危害。可以说,解决EOL lib问题的最佳方法是循环利用和回收电池中所含的金属。这可以将EOL电池从环境中转移出来,并回收可在制造新产品中重复使用的贵金属,从而减少对采矿业原始材料的需求。EOL lib回收过程的最大障碍是其不稳定的化学性质和打开气密外壳的重大安全隐患。为了尽量减少这些问题,必须用少数几种可用的方法之一来稳定寿命终止的细胞。本文综述了目前研究的EOL LIB电池放电和稳定的化学方法。根据迄今为止发表的文献,讨论了该方法及其变体的优点和缺点。文献综述发现,相当数量的作者在没有正确理解相关风险的情况下使用化学稳定技术。许多作者只关注最便宜和最快的方法来阻止电池产生电荷,而没有额外考虑与所提出的稳定方法相关的下游回收过程的安全隐患。只有少数研究强调了与化学稳定技术相关的风险和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信