Norshahirah Mohamad Saidi, Muhammad Amirul Aizat Mohd Abdah, Muhammad Norhaffis Mustafa, Rashmi Walvekar, Mohammad Khalid, Ajit Khosla
{"title":"提高锂离子电池性能的硅阳极的进展:下一代超级电池的创新","authors":"Norshahirah Mohamad Saidi, Muhammad Amirul Aizat Mohd Abdah, Muhammad Norhaffis Mustafa, Rashmi Walvekar, Mohammad Khalid, Ajit Khosla","doi":"10.1002/bte2.20240048","DOIUrl":null,"url":null,"abstract":"<p>Silicon (Si)-based materials have emerged as promising alternatives to graphite anodes in lithium-ion (Li-ion) batteries due to their exceptionally high theoretical capacity. However, their practical deployment remains constrained by challenges such as significant volume changes during lithiation, poor electrical conductivity, and the instability of the solid electrolyte interphase (SEI). This review critically examines recent advancements in Si-based nanostructures to enhance stability and electrochemical performance. Distinct from prior studies, it highlights the application of Si anodes in commercial domains, including electric vehicles, consumer electronics, and renewable energy storage systems, where prolonged cycle life and improved power density are crucial. Special emphasis is placed on emerging fabrication techniques, particularly scalable and cost-effective methods such as electrospinning and sol–gel processes, which show promise for industrial adoption. By addressing both the technical innovations and economic considerations surrounding Si anodes, this review provides a comprehensive roadmap for overcoming existing barriers, paving the way for next-generation, high-performance batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240048","citationCount":"0","resultStr":"{\"title\":\"Advancements in Silicon Anodes for Enhanced Lithium-Ion Batteries Performance: Innovations Toward Next-Gen Superbatteries\",\"authors\":\"Norshahirah Mohamad Saidi, Muhammad Amirul Aizat Mohd Abdah, Muhammad Norhaffis Mustafa, Rashmi Walvekar, Mohammad Khalid, Ajit Khosla\",\"doi\":\"10.1002/bte2.20240048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon (Si)-based materials have emerged as promising alternatives to graphite anodes in lithium-ion (Li-ion) batteries due to their exceptionally high theoretical capacity. However, their practical deployment remains constrained by challenges such as significant volume changes during lithiation, poor electrical conductivity, and the instability of the solid electrolyte interphase (SEI). This review critically examines recent advancements in Si-based nanostructures to enhance stability and electrochemical performance. Distinct from prior studies, it highlights the application of Si anodes in commercial domains, including electric vehicles, consumer electronics, and renewable energy storage systems, where prolonged cycle life and improved power density are crucial. Special emphasis is placed on emerging fabrication techniques, particularly scalable and cost-effective methods such as electrospinning and sol–gel processes, which show promise for industrial adoption. By addressing both the technical innovations and economic considerations surrounding Si anodes, this review provides a comprehensive roadmap for overcoming existing barriers, paving the way for next-generation, high-performance batteries.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancements in Silicon Anodes for Enhanced Lithium-Ion Batteries Performance: Innovations Toward Next-Gen Superbatteries
Silicon (Si)-based materials have emerged as promising alternatives to graphite anodes in lithium-ion (Li-ion) batteries due to their exceptionally high theoretical capacity. However, their practical deployment remains constrained by challenges such as significant volume changes during lithiation, poor electrical conductivity, and the instability of the solid electrolyte interphase (SEI). This review critically examines recent advancements in Si-based nanostructures to enhance stability and electrochemical performance. Distinct from prior studies, it highlights the application of Si anodes in commercial domains, including electric vehicles, consumer electronics, and renewable energy storage systems, where prolonged cycle life and improved power density are crucial. Special emphasis is placed on emerging fabrication techniques, particularly scalable and cost-effective methods such as electrospinning and sol–gel processes, which show promise for industrial adoption. By addressing both the technical innovations and economic considerations surrounding Si anodes, this review provides a comprehensive roadmap for overcoming existing barriers, paving the way for next-generation, high-performance batteries.