Vo Chau Ngoc Anh, Le Thi Thanh Nhi, Le Thi Kim Dung, Dang Thi Ngoc Hoa, Nguyen Truong Son, Nguyen Thi Thao Uyen, Nguyen Ngoc Uyen Thu, Le Van Thanh Son, Le Trung Hieu, Tran Ngoc Tuyen, Dinh Quang Khieu
{"title":"Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots.","authors":"Vo Chau Ngoc Anh, Le Thi Thanh Nhi, Le Thi Kim Dung, Dang Thi Ngoc Hoa, Nguyen Truong Son, Nguyen Thi Thao Uyen, Nguyen Ngoc Uyen Thu, Le Van Thanh Son, Le Trung Hieu, Tran Ngoc Tuyen, Dinh Quang Khieu","doi":"10.3762/bjnano.15.43","DOIUrl":"10.3762/bjnano.15.43","url":null,"abstract":"<p><p>A simple approach was developed to synthesize cobalt ferrite nanoparticles/graphene quantum dots (CF/GQDs). The material was prepared from a homogeneous mixture of iron nitrate, cobalt nitrate, and starch at 140, 180 and 200 °C in a 24 h thermal hydrolysis process. The obtained materials were characterised by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, vibrating-sample magnetometry, and nitrogen adsorption/desorption isotherms. Cobalt ferrite crystals of around 8-10 nm and graphene quantum dots formed directly at 200 °C. Stacking GQDs sheets onto the CF nanoparticles resulted in CF/GQDs nanoparticles. The nanocomposite exhibits satisfactory fluorescent and superparamagnetic properties, which are vital for catalytic applications. The CF/GQDs catalyse significantly the degradation of methylene blue (MB) under visible light. The catalyst can be recycled with an external magnetic field and displays suitable stability. Also, it was reused in three successive experiments with a loss of efficiency of about 5%. The CF/GQDs are considered as an efficient photocatalyst for MB degradation and other dyes.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"475-489"},"PeriodicalIF":3.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elyad Damerchi, Sven Oras, Edgars Butanovs, Allar Liivlaid, Mikk Antsov, Boris Polyakov, Annamarija Trausa, Veronika Zadin, Andreas Kyritsakis, Loïc Vidal, Karine Mougin, Siim Pikker, Sergei Vlassov
{"title":"Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate.","authors":"Elyad Damerchi, Sven Oras, Edgars Butanovs, Allar Liivlaid, Mikk Antsov, Boris Polyakov, Annamarija Trausa, Veronika Zadin, Andreas Kyritsakis, Loïc Vidal, Karine Mougin, Siim Pikker, Sergei Vlassov","doi":"10.3762/bjnano.15.39","DOIUrl":"10.3762/bjnano.15.39","url":null,"abstract":"<p><p>Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced fragmentation of NWs is attributed to the interplay between heat-enhanced diffusion and Rayleigh instability. In this work, we demonstrated that contact with the substrate plays an important role in the fragmentation process and can strongly affect the outcome of the heat treatment. We deposited silver NWs onto specially patterned silicon wafers so that some NWs were partially suspended over the holes in the substrate. Then, we performed a series of heat-treatment experiments and found that adhered and suspended parts of NWs behave differently under the heat treatment. Moreover, depending on the heat-treatment process, fragmentation in either adhered or suspended parts can dominate. Experiments were supported by finite element method and molecular dynamics simulations.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"435-446"},"PeriodicalIF":3.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunila Bakhsh, Muhammad Khalid, Sameen Aslam, Muhammad Sohail, Muhammad Aamir Iqbal, Mujtaba Ikram, Kareem Morsy
{"title":"Investigating structural and electronic properties of neutral zinc clusters: a <i>G</i><sub>0</sub><i>W</i><sub>0</sub> and <i>G</i><sub>0</sub><i>W</i><sub>0</sub>Г<sub>0</sub><sup>(1)</sup> benchmark.","authors":"Sunila Bakhsh, Muhammad Khalid, Sameen Aslam, Muhammad Sohail, Muhammad Aamir Iqbal, Mujtaba Ikram, Kareem Morsy","doi":"10.3762/bjnano.15.28","DOIUrl":"https://doi.org/10.3762/bjnano.15.28","url":null,"abstract":"<p><p>The structural and electronic properties of zinc clusters (Zn<i><sub>n</sub></i>) for a size range of <i>n</i> = 2-15 are studied using density functional theory. The particle swarm optimization algorithm is employed to search the structure and to determine the ground-state structure of the neutral Zn clusters. The structural motifs are optimized using the density functional theory approach to ensure that the structures are fully relaxed. Results are compared with the literature to validate the accuracy of the prediction method. The binding energy per cluster is obtained and compared with the reported literature to study the stability of these structures. We further assess the electronic properties, including the ionization potential, using the all-electron FHI-aims code employing <i>G</i><sub>0</sub><i>W</i><sub>0</sub> calculations, and the <i>G</i><sub>0</sub><i>W</i><sub>0</sub><i>Г</i><sub>0</sub><sup>(1)</sup> correction for a few smaller clusters, which provides a better estimation of the ionization potential compared to other methods.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"310-316"},"PeriodicalIF":3.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the relationships between physiochemical properties of nanoparticles and cell damage to combat cancer growth using simple periodic table-based descriptors.","authors":"Joyita Roy, Kunal Roy","doi":"10.3762/bjnano.15.27","DOIUrl":"https://doi.org/10.3762/bjnano.15.27","url":null,"abstract":"<p><p>A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design them effectively for regulated use. Although NMs are utilized in therapeutics, their cytotoxicity has attracted great attention. Nanoscale quantitative structure-property relationship (nano-QSPR) models can help in understanding the relationship between NMs and the biological environment and provide new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta potential and obtaining the toxicity profile regarding cell damage in the treatment of cancer cells. To achieve this, QSPR modeling was first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that lack such information. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had the potential to influence oxidative damage through free radical accumulation, which could lead to changes in the survival rate of cancerous cells. The developed QSPR and quantitative structure-activity relationship models also give hints regarding safer design and toxicity assessment of MeOx NMs.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"297-309"},"PeriodicalIF":3.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane.","authors":"Shangbi Chen, Dewen Liu, Weiwei Chen, Huajiang Chen, Jiawei Li, Jinfang Wang","doi":"10.3762/bjnano.15.25","DOIUrl":"10.3762/bjnano.15.25","url":null,"abstract":"<p><p>The majority of crack sensors do not offer simultaneously both a significant stretchability and an ultrahigh sensitivity. In this study, we present a straightforward and cost-effective approach to fabricate metal crack sensors that exhibit exceptional performance in terms of ultrahigh sensitivity and ultrahigh stretchability. This is achieved by incorporating a helical structure into the substrate through a modeling process and, subsequently, depositing a thin film of gold onto the polydimethylsiloxane substrate via sputter deposition. The metal thin film is then pre-stretched to generate microcracks. The sensor demonstrates a remarkable stretchability of 300%, an exceptional sensitivity with a maximum gauge factor reaching 10<sup>7</sup>, a rapid response time of 158 ms, minimal hysteresis, and outstanding durability. These impressive attributes are attributed to the deliberate design of geometric structures and careful selection of connection types for the sensing materials, thereby presenting a novel approach to fabricating stretchable and highly sensitive crack-strain sensors. This work offers a universal platform for constructing strain sensors with both high sensitivity and stretchability, showing a far-reaching significance and influence for developing next-generation practically applicable soft electronics.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"270-278"},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study.","authors":"Zeynep Özcan, Afife Binnaz Hazar Yoruç","doi":"10.3762/bjnano.15.24","DOIUrl":"10.3762/bjnano.15.24","url":null,"abstract":"<p><p>In this study, a multifunctional therapeutic agent combining chemotherapy and photothermal therapy on a single platform has been developed in the form of vinorelbine-loaded polydopamine-coated iron oxide nanoparticles. Vinorelbine (VNB) is loaded on the surface of iron oxide nanoparticles produced by a solvothermal technique after coating with polydopamine (PDA) with varying weight ratios as a result of dopamine polymerisation and covalent bonding of thiol-polyethylene glycol (SH-PEG). The VNB/PDA/Fe<sub>3</sub>O<sub>4</sub> nanoparticles have a saturation magnetisation value of 60.40 emu/g in vibrating sample magnetometry, which proves their magnetisation. Vinorelbine, which is used as an effective cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design, magnetic response, and controlled drug release with photothermal effect brings a different perspective to advanced cancer treatment research.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"256-269"},"PeriodicalIF":3.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
August K Roos, Ermes Scarano, Elisabet K Arvidsson, Erik Holmgren, David B Haviland
{"title":"Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications.","authors":"August K Roos, Ermes Scarano, Elisabet K Arvidsson, Erik Holmgren, David B Haviland","doi":"10.3762/bjnano.15.23","DOIUrl":"10.3762/bjnano.15.23","url":null,"abstract":"<p><p>We describe a transducer for low-temperature atomic force microscopy based on electromechanical coupling due to a strain-dependent kinetic inductance of a superconducting nanowire. The force sensor is a bending triangular plate (cantilever) whose deflection is measured via a shift in the resonant frequency of a high-<i>Q</i> superconducting microwave resonator at 4.5 GHz. We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning the coupling to the transmission line used to measure the microwave resonance. A detailed description of our fabrication is presented, including information about the process parameters used for each layer. We also discuss the fabrication of sharp tips on the cantilever using focused electron beam-induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor's operation as an electromechanical transducer of force.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"242-255"},"PeriodicalIF":3.1,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139911967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandra Szkudlarek, Jan M Michalik, Inés Serrano-Esparza, Zdeněk Nováček, Veronika Novotná, Piotr Ozga, Czesław Kapusta, José María De Teresa
{"title":"Graphene removal by water-assisted focused electron-beam-induced etching - unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO<sub>2</sub> substrates.","authors":"Aleksandra Szkudlarek, Jan M Michalik, Inés Serrano-Esparza, Zdeněk Nováček, Veronika Novotná, Piotr Ozga, Czesław Kapusta, José María De Teresa","doi":"10.3762/bjnano.15.18","DOIUrl":"10.3762/bjnano.15.18","url":null,"abstract":"<p><p>Graphene is one of the most extensively studied 2D materials, exhibiting extraordinary mechanical and electronic properties. Although many years have passed since its discovery, manipulating single graphene layers is still challenging using standard resist-based lithography techniques. Recently, it has been shown that it is possible to etch graphene directly in water-assisted processes using the so-called focused electron-beam-induced etching (FEBIE), with a spatial resolution of ten nanometers. Nanopatterning graphene with such a method in one single step and without using a physical mask or resist is a very appealing approach. During the process, on top of graphene nanopatterning, we have found significant morphological changes induced in the SiO<sub>2</sub> substrate even at low electron dose values (<8 nC/μm<sup>2</sup>). We demonstrate that graphene etching and topographical changes in SiO<sub>2</sub> substrates can be controlled via electron beam parameters such as dwell time and dose.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"190-198"},"PeriodicalIF":3.1,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862135/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phuong-Thao Dang-Luong, Hong-Phuc Nguyen, Loc Le-Tuan, Xuan-Thang Cao, Vy Tran-Anh, Hieu Vu Quang
{"title":"Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics.","authors":"Phuong-Thao Dang-Luong, Hong-Phuc Nguyen, Loc Le-Tuan, Xuan-Thang Cao, Vy Tran-Anh, Hieu Vu Quang","doi":"10.3762/bjnano.15.17","DOIUrl":"10.3762/bjnano.15.17","url":null,"abstract":"<p><p>Theragnostics has become a popular term nowadays, since it enables both diagnosis and therapy at the same time while only using one carrier platform. Therefore, formulating a nanocarrier system that could serve as theragnostic agent by using simple techniques would be an advantage during production. In this project, we aimed to develop a nanocarrier that can be loaded with the chemotherapeutic medication chlorambucil and magnetic resonance imaging agents (e.g., iron oxide nanoparticles and near-infrared fluorophore IR780) for theragnostics. Poly(lactic-<i>co</i>-glycolic acid) was combined with the aforementioned ingredients to generate poly(vinyl alcohol)-based nanoparticles (NPs) using the single emulsion technique. Then the NPs were coated with F127 and F127-folate by simple incubation for five days. The nanoparticles have the hydrodynamic size of approx. 250 nm with negative charge. Similar to chlorambucil and IR780, iron oxide loadings were observed for all three kinds of NPs. The release of chlorambucil was quicker at pH 5.4 than at pH 7.4 at 37 °C. The F127@NPs and F127-folate@NPs demonstrated much greater cell uptake and toxicity up to 72 h after incubation. Our in vitro results of F127@NPs and F127-folate@NPs have demonstrated the ability of these systems to serve as medication and imaging agent carriers for cancer treatment and diagnostics, respectively.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"180-189"},"PeriodicalIF":3.1,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nghiem Thi Thuong, Le Dinh Quang, Vu Quoc Cuong, Cao Hong Ha, Nguyen Ba Lam, Seiichi Kawahara
{"title":"Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites.","authors":"Nghiem Thi Thuong, Le Dinh Quang, Vu Quoc Cuong, Cao Hong Ha, Nguyen Ba Lam, Seiichi Kawahara","doi":"10.3762/bjnano.15.16","DOIUrl":"10.3762/bjnano.15.16","url":null,"abstract":"<p><p>Modification of graphene oxide (GO) by vinyltriethoxysilane (VTES) was investigated to study the effect of silanized GO on radical graft copolymerization of GO onto deproteinized natural rubber (DPNR). The modified GO, GO-VTES (a and b), was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, contact angle, thermal gravimetric analysis, and scanning electron microscopy. The XRD results showed the appearance of an amorphous region of silica particles at a diffraction angle of 22°. The formation of silica was investigated by <sup>29</sup>Si NMR, and it was found that the hydrolysis and condensation of VTES proceed more completely in basic conditions than in acidic conditions. The silica content of GO-VTES(b) was 43%, which is higher than that of GO-VTES(a) (8%). Morphology of silica was observed by SEM. The DPNR/GO-VTES nanocomposites prepared with the same amount of GO, GO-VTES(a), and GO-VTES(b) were characterized with tensile tests and dynamic mechanical tests. The stress at break of DPNR/GO-VTES(a) and DPNR/GO-VTES(b) was 5.2 MPa and 4.3 MPa, respectively, which were lower than that of DPNR/GO. However, it exhibited higher stress at small strains and higher storage modulus than DPNR/GO.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"168-179"},"PeriodicalIF":3.1,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}