Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model.

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2024-12-17 eCollection Date: 2024-01-01 DOI:10.3762/bjnano.15.128
Xochitl Aleyda Morán Martínez, José Alberto Luna López, Zaira Jocelyn Hernández Simón, Gabriel Omar Mendoza Conde, José Álvaro David Hernández de Luz, Godofredo García Salgado
{"title":"Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model.","authors":"Xochitl Aleyda Morán Martínez, José Alberto Luna López, Zaira Jocelyn Hernández Simón, Gabriel Omar Mendoza Conde, José Álvaro David Hernández de Luz, Godofredo García Salgado","doi":"10.3762/bjnano.15.128","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a simulation of the elementary chemical reactions during SiO <i><sub>x</sub></i> film growth in a hot filament chemical vapor deposition (HFCVD) reactor was carried out using a 2D model. For the 2D simulation, the continuity, momentum, heat, and diffusion equations were solved numerically by the software COMSOL Multiphysics based on the finite element method. The model allowed for the simulation of the key parameters of the HFCVD reactor. Also, a thermochemical study of the heterogeneous reaction between the precursors quartz and hydrogen was carried out. The obtained equilibrium constants (<i>K</i> <sub>eq</sub>) were related to the temperature profile in the deposition zone and used in the proposed simulation. The validation of the model was carried out by measuring the temperature experimentally, where the temperature range on the substrate is 450 to 500 °C for different deposition parameters. In the simulation, the laminar flow of species contributing to the film growth was confirmed, and the simulated concentration profiles of H° and SiO near the filaments and the sources were as expected. H° and SiO are essential species for the subsequent growth of the SiO <i><sub>x</sub></i> films. These SiO <i><sub>x</sub></i> films have interesting properties and embedded nanostructures, which make them excellent dielectric, optoelectronic, and electroacoustic materials for the fabrication of devices compatible with silicon-based technology.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1627-1638"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.128","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a simulation of the elementary chemical reactions during SiO x film growth in a hot filament chemical vapor deposition (HFCVD) reactor was carried out using a 2D model. For the 2D simulation, the continuity, momentum, heat, and diffusion equations were solved numerically by the software COMSOL Multiphysics based on the finite element method. The model allowed for the simulation of the key parameters of the HFCVD reactor. Also, a thermochemical study of the heterogeneous reaction between the precursors quartz and hydrogen was carried out. The obtained equilibrium constants (K eq) were related to the temperature profile in the deposition zone and used in the proposed simulation. The validation of the model was carried out by measuring the temperature experimentally, where the temperature range on the substrate is 450 to 500 °C for different deposition parameters. In the simulation, the laminar flow of species contributing to the film growth was confirmed, and the simulated concentration profiles of H° and SiO near the filaments and the sources were as expected. H° and SiO are essential species for the subsequent growth of the SiO x films. These SiO x films have interesting properties and embedded nanostructures, which make them excellent dielectric, optoelectronic, and electroacoustic materials for the fabrication of devices compatible with silicon-based technology.

HFCVD反应器中的非均相反应:用二维模型模拟。
在本研究中,使用二维模型模拟了热丝化学气相沉积(HFCVD)反应器中SiO x膜生长过程中的基本化学反应。采用COMSOL Multiphysics软件,基于有限元法对连续方程、动量方程、热量方程和扩散方程进行数值求解。该模型对HFCVD反应器的关键参数进行了模拟。同时,对前驱体石英与氢的非均相反应进行了热化学研究。得到的平衡常数(K eq)与沉积区温度分布有关,并用于所提出的模拟。通过实验温度测量对模型进行了验证,在不同的沉积参数下,衬底上的温度范围为450 ~ 500℃。在模拟中,证实了物质的层流促进了膜的生长,模拟的H°和SiO在细丝和源附近的浓度分布符合预期。H°和SiO是siox薄膜后续生长的必需物质。这些SiO x薄膜具有有趣的特性和嵌入的纳米结构,这使它们成为与硅基技术兼容的器件制造的优秀介电、光电和电声材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信