Norma Salvadores Farran, Limin Wang, Primoz Pirih, Bodo D Wilts
{"title":"Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates.","authors":"Norma Salvadores Farran, Limin Wang, Primoz Pirih, Bodo D Wilts","doi":"10.3762/bjnano.16.1","DOIUrl":null,"url":null,"abstract":"<p><p>The scales of the gold-dust weevil <i>Hypomeces squamosus</i> are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations. The reciprocal space images and reflection spectra obtained from single domains indicated a partial photonic bandgap in the wavelength range from 450 to 650 nm. Light reflected from {111}-oriented domains is green-yellow. Light reflected from blue, {100}-oriented domains exhibits polarization conversion, rotating the angle of linearly polarized light. The overall coloration, resulting from the reflections from many scales, is close to uniformly diffuse because of the random orientation of the domains. Using titania sol-gel chemistry, we produced negative replicas that exhibited a 70 to 120 nm redshift of the bandgap, depending on the lattice orientation. The wavelength shift in {100} orientation is supported by full-wave optical modeling of a dual diamond network with an exchanged fill fraction (0.56) of the material with the refractive index in the range of 1.55 to 2.00. The study suggests that the effective refractive index of titania in the 3D lattice is similar to that in sol-gel films. The study demonstrates the potential of replicating complex biophotonic structures using the sol-gel technique. Optimization of the sol-gel process could lead to customizable photonic bandgaps that might be used in novel optical materials.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1-10"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The scales of the gold-dust weevil Hypomeces squamosus are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations. The reciprocal space images and reflection spectra obtained from single domains indicated a partial photonic bandgap in the wavelength range from 450 to 650 nm. Light reflected from {111}-oriented domains is green-yellow. Light reflected from blue, {100}-oriented domains exhibits polarization conversion, rotating the angle of linearly polarized light. The overall coloration, resulting from the reflections from many scales, is close to uniformly diffuse because of the random orientation of the domains. Using titania sol-gel chemistry, we produced negative replicas that exhibited a 70 to 120 nm redshift of the bandgap, depending on the lattice orientation. The wavelength shift in {100} orientation is supported by full-wave optical modeling of a dual diamond network with an exchanged fill fraction (0.56) of the material with the refractive index in the range of 1.55 to 2.00. The study suggests that the effective refractive index of titania in the 3D lattice is similar to that in sol-gel films. The study demonstrates the potential of replicating complex biophotonic structures using the sol-gel technique. Optimization of the sol-gel process could lead to customizable photonic bandgaps that might be used in novel optical materials.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.