BiocharPub Date : 2024-06-05DOI: 10.1007/s42773-024-00346-x
Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang
{"title":"High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe–Mn oxide modified biochar and its microbial community responses","authors":"Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang","doi":"10.1007/s42773-024-00346-x","DOIUrl":"https://doi.org/10.1007/s42773-024-00346-x","url":null,"abstract":"<p>Fe–Mn oxide modified biochar (FMBC) was produced to explore its potential for remediation of Hg–Cd contaminated paddy soils. The results showed that the application of FMBC decreased the contents of bioavailable Hg and Cd by 41.49–81.85% and 19.47–33.02% in contrast to CK, while the amount of labile organic carbon (C) fractions and C-pool management index (CPMI) was increased under BC and FMBC treated soils, indicating the enhancement of soil C storage and nutrient cycling function. Dry weight of different parts of <i>Oryza sativa</i> L. was enhanced after the addition of BC and FMBC, and the contents of Fe and Mn in root iron–manganese plaques (IMP) were 1.46–2.06 and 6.72–19.35 times higher than those of the control groups. Hg and Cd contents in brown rice under the FMBC treatments were significantly reduced by 18.32–71.16% and 59.52–72.11% compared with the control. FMBC addition altered the composition and metabolism function of soil bacterial communities, especially increasing the abundance of keystone phyla, including <i>Firmicutes</i>, <i>Proteobacteria and Actinobacteria.</i> Partial least squares path modelling (PLSPM) revealed that the contents of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>–Hg, DTPA–Cd and IMP were the key indicators affecting Hg and Cd accumulation in rice grains. These results demonstrate the simultaneous value of FMBC in remediation of Hg and Cd combined pollution and restoring soil fertility and biological productivity.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"43 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocharPub Date : 2024-06-04DOI: 10.1007/s42773-024-00347-w
Yousif Abdelrahman Yousif Abdellah, Hong-Yu Chen, Shi-Wen Deng, Wan-Ting Li, Rong-Jie Ren, Xi Yang, Muhammad Shoaib Rana, Shan-Shan Sun, Jia-Jie Liu, Rui-Long Wang
{"title":"Mikania micrantha Kunth and its derived biochar impacts on heavy metal bioavailability and siderophore-related genes during chicken manure composting","authors":"Yousif Abdelrahman Yousif Abdellah, Hong-Yu Chen, Shi-Wen Deng, Wan-Ting Li, Rong-Jie Ren, Xi Yang, Muhammad Shoaib Rana, Shan-Shan Sun, Jia-Jie Liu, Rui-Long Wang","doi":"10.1007/s42773-024-00347-w","DOIUrl":"https://doi.org/10.1007/s42773-024-00347-w","url":null,"abstract":"<p>Biochar can potentially reduce heavy metals (HMs) mobility and bioavailability during composting. However, siderophores secreted by functional microbes might lead to the re-mobilization of metals like Cu and Zn. Therefore, this study intended to explore the impacts of <i>Mikania micrantha</i> Kunth (MM) and MM-derived biochar (MMB) in the reduction of Cu and Zn bioavailability, and siderophore-related gene abundances during composting. Compared with MM and corn straw (CS) composts, a significant decline was noticed in the extractable and reducible Cu [(2.3 mg kg<sup>−1</sup> + 12.1 mg kg<sup>−1</sup>), and (3.3 mg kg<sup>−1</sup> + 14.6 mg kg<sup>−1</sup>)], and Zn [(103.1 mg kg<sup>−1</sup> + 110.1 mg kg<sup>−1</sup>), and (109.6 mg kg<sup>−1</sup> + 117.2 mg kg<sup>−1</sup>)] in MMB and corn straw biochar (CSB) composts, respectively. Besides, the lowest relative abundance of HMs-resistant bacteria particularly <i>Corynebacterium</i> (0.40%), <i>Pseudomonas</i> (0.46%), and <i>Enterobacter</i> (0.47%), was noted in MMB compost. Also, a significant increase in sesquiterpenoid and triterpenoid biosynthesis abundance (5.77%) accompanied by a reduction in the abundance of clusters related to siderophore transport, and siderophore transmembrane transporter activity was detected in MMB compost. Multivariate analysis labeled temperature, moisture content, total organic carbon, <i>Corynebacterium</i>, and <i>Bacillus</i> as the primary factors significantly correlated with the Cu and Zn bioavailability (− 0.90 ≤ r ≤ 0.90, <i>P</i> < 0.05). The structural equation model revealed that physicochemical parameters, microbial abundance, and siderophores exert a substantial influence on Cu and Zn bioavailability. Accordingly, MM and its derived biochar are recommended as an effective approach for accelerating Cu and Zn bioavailability reduction and managing the growth and distribution of invasive plants.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"26 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocharPub Date : 2024-05-09DOI: 10.1007/s42773-024-00334-1
Nader Marzban, Judy A. Libra, Vera Susanne Rotter, Christiane Herrmann, Kyoung S. Ro, Svitlana Filonenko, Thomas Hoffmann, Markus Antonietti
{"title":"Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification","authors":"Nader Marzban, Judy A. Libra, Vera Susanne Rotter, Christiane Herrmann, Kyoung S. Ro, Svitlana Filonenko, Thomas Hoffmann, Markus Antonietti","doi":"10.1007/s42773-024-00334-1","DOIUrl":"https://doi.org/10.1007/s42773-024-00334-1","url":null,"abstract":"<p>Hydrothermal carbonization (HTC) converts wet biomass into hydrochar and a process liquid, but aromatic compounds in the products have been reported as a roadblock for soil applications as they can inhibit germination, plant growth, and soil microbial activity. Here, we compared HTC and hydrothermal humification (HTH) of cow manure digestate while varying the initial alkaline content by adding KOH. HTH converted 37.5 wt% of the feedstock to artificial humic acids (A-HAs) found in both solid and liquid, twice that of HTC. HTH reduced phenolic and furanic aromatic compounds by over 70% in solids and 90% in liquids. The A-HAs in HTH resemble natural humic acids (N-HA), based on FTIR, UV–vis spectra, and CHN and XRD analysis. The HTH liquid possesses 60% higher total organic carbon (TOC) than HTC. Although one-third of TOC can be precipitated as A-HA, a high TOC concentration remains in the liquid, which is shown to be mainly organic acids. Therefore, we also evaluated the HTC and HTH liquids for anaerobic biomethane production, and found that compared to the original cow manure digestate, the HTH liquids increased methane yield by 110.3 to 158.6%, a significant enhancement relative to the 17.2% increase seen with HTC liquid. The strong reduction in organic acids during biogas production from HTH liquid indicates the potential for converting soluble byproducts into methane, while maintaining high A-HAs levels in the solid product.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"79 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocharPub Date : 2024-05-09DOI: 10.1007/s42773-024-00333-2
Yefang Sun, Da Ouyang, Yiming Cai, Ting Guo, Mei Li, Xinlin Zhao, Qichun Zhang, Ruihuan Chen, Fangzhen Li, Xiujuan Wen, Lu Xie, Haibo Zhang
{"title":"Cupriavidus B-7 immobilized biochar: an effective solution for Cd accumulation alleviation and growth promotion in pakchoi (Brassica Chinensis L.)","authors":"Yefang Sun, Da Ouyang, Yiming Cai, Ting Guo, Mei Li, Xinlin Zhao, Qichun Zhang, Ruihuan Chen, Fangzhen Li, Xiujuan Wen, Lu Xie, Haibo Zhang","doi":"10.1007/s42773-024-00333-2","DOIUrl":"https://doi.org/10.1007/s42773-024-00333-2","url":null,"abstract":"<p>Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain (<i>Cupriavidus</i> B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the <i>Cupriavidus</i> B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl<sub>2</sub>-extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of <i>Cupriavidus</i> B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and <i>Cupriavidus</i> B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"79 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stress resistance enhancing with biochar application and promotion on crop growth","authors":"Wenchen Chi, Qiong Nan, Yuxue Liu, Da Dong, Yong Qin, Shengjie Li, Weixiang Wu","doi":"10.1007/s42773-024-00336-z","DOIUrl":"https://doi.org/10.1007/s42773-024-00336-z","url":null,"abstract":"<p>Environmental stressors such as drought, salinity, and heavy metals pose significant obstacles to achieving sustainable food security, necessitating the development of universally applicable and cost-effective solutions to ameliorate soil under stress. Biochar, an eco-friendly material to increase crop yield, has been researched for almost two decades and has great potential for global use in enhancing stress resistance. However, there hasn't been comprehensive research on the impact of biochar application on soil properties, and root and crop growth. To optimize and promote biochar application in agriculture under stress, this study integrates over 100 peer-reviewed articles to explain how biochar promotes crop growth by enhancing soil resistance to stress. Biochar's distinctive properties, such as porous structure, alkaline nature, enriched surface functional groups, and nutrient content, are responsible for the following soil environment benefits: improved soil physiochemical properties, increased nutrient cycling, and boosted microbial growth. Moreover, the research emphasizes that the enhanced stress resistance of biochar optimizes nutrient absorption, alleviates soil pollutants, and thereby enhances overall crop productivity. The study discusses the roles and mechanisms of biochar on soil under stress, as well as the challenges linked to the sustainable and economical implementation of biochar in extreme soil conditions. This review aims to provide a theoretical basis for the widespread and cost-effective use of biochar in improving soil under stresses, thereby enhancing soil health and food security.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"150 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocharPub Date : 2024-04-22DOI: 10.1007/s42773-024-00331-4
Yuan Liang, Ran Tao, Ben Zhao, Zeda Meng, Yuanyuan Cheng, Fan Yang, Huihui Lei, Lingzhao Kong
{"title":"Roles of iron and manganese in bimetallic biochar composites for efficient persulfate activation and atrazine removal","authors":"Yuan Liang, Ran Tao, Ben Zhao, Zeda Meng, Yuanyuan Cheng, Fan Yang, Huihui Lei, Lingzhao Kong","doi":"10.1007/s42773-024-00331-4","DOIUrl":"https://doi.org/10.1007/s42773-024-00331-4","url":null,"abstract":"<p>As for Atrazine (C<sub>8</sub>H<sub>14</sub>ClN<sub>5</sub>) degradation in soil, iron (Fe)-manganese (Mn) bimetallic biochar composites were proved to be more efficient for persulfate (PS) activation than monometallic ones. The atrazine removal rates of Fe/Mn loaded biochar + PS systems were 2.17–2.89 times higher than Fe/Mn loaded biochar alone. Compared with monometallic biochar, the higher atrazine removal rates by bimetallic biochar (77.2–96.7%) were mainly attributed to the synergy degradation and adsorption due to the larger amounts of metal oxides on the biochar surface. Atrazine degradation in Fe-rich biochar systems was mainly attributed to free radicals (i.e., <span>({text{SO}}_{4}^{ cdot - })</span> and ·OH) through oxidative routes, whereas surface-bound radicals, <sup>1</sup>O<sub>2</sub>, and free radicals were responsible for the degradation of atrazine in Mn-rich biochar systems. Furthermore, with a higher ratio of Fe(II) and Mn(III) formed in Fe-rich bimetallic biochar, the valence state exchange between Fe and Mn contributed significantly to the more effective activation of PS and the generation of more free radicals. The pathways of atrazine degradation in the Fe-rich bimetallic biochar systems involved alkyl hydroxylation, alkyl oxidation, dealkylation, and dechlorohydroxylation. The results indicated that bimetallic biochar composites with more Fe and less Mn are more effective for the PS-based degradation of atrazine, which guides the ration design of easily available carbon materials targeted for the efficient remediation of various organic-polluted soil.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"140 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: based on a 6-year field experiment","authors":"Feng Jin, Junlong Piao, Shihao Miao, Weikang Che, Xiang Li, Xuebin Li, Tatsuhiko Shiraiwa, Tomoyuki Tanaka, Kazuki Taniyoshi, Shuang Hua, Yu Lan","doi":"10.1007/s42773-024-00332-3","DOIUrl":"https://doi.org/10.1007/s42773-024-00332-3","url":null,"abstract":"<p>Biochar application can alleviate the adverse effects of saline-alkali stress on crops. However, the long-term effects of one-off biochar application on soil physicochemical properties, salt concentration, nutrient availability, soil enzyme activities, and rice yield under highly saline-alkali paddy soils remain unclear. Here, a 6-year paddy field study was conducted in a saline-alkali paddy field using two nitrogen application levels (0 and 225 kg ha<sup>−1</sup>) and four biochar application rates [0 (T0), 1.5% (T1.5), 3.0% (T3.0), and 4.5% (T4.5) biochar, w/w]. The results showed that compared with T0, the bulk density (BD) under T1.5, T3.0, and T4.5 treatments significantly decreased by 11.21%, 16.33%, and 25.57%, while total porosity (Tp) and saturated hydraulic conductivity (<i>Ks</i>) increased by 19.15–27.34% and 3217.78–5539.83%, respectively. Biochar consistently improved soil macro-aggregates, mean weight diameter (MWD), and the percentage of water-stable aggregates (PWSA) over the years. Additionally, one-off application of biochar continuously reduced the soil Na<sup>+</sup> concentration, Na<sup>+</sup>/K<sup>+</sup> ratio, Na<sup>+</sup>/Ca<sup>2+</sup> ratio, saturated paste extract (ECe), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SARe). However, it reduced the pH in 2021 and 2022 only. It enhanced the concentration of K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, and cation exchange capacity (CEC) over the 6-year study, indicating its longer-term positive impact. Furthermore, the one-off biochar application, especially under high application rate treatments (T3.0 and T4.5), significantly and continuously improved nutrient availability and soil enzyme activities. However, alkali-hydrolysable nitrogen (AN) decreased in the initial year of biochar application. The grain yield of T1.5, T3.0, and T4.5 surpassed that of T0 by 116.38%, 141.24%, and 145.20%, respectively. Notably, the rice yield reached its peak with the treatment of 3.0% (w/w) in all 6 years of study period. These findings offered new perspectives on repairing and improving soil quality and production ability of highly saline-alkali paddy soils.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"100 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect mechanism of phosphorous-containing additives on carbon structure evolution and biochar stability enhancement","authors":"Haiping Yang, Yamian Yu, Han Zhang, Wanwan Wang, Jinjiao Zhu, Yingquan Chen, Shihong Zhang, Hanping Chen","doi":"10.1007/s42773-024-00330-5","DOIUrl":"https://doi.org/10.1007/s42773-024-00330-5","url":null,"abstract":"<p>The regulation of the pyrolysis process is a key step in increasing the carbon sequestration capacity of biochar. The effect of K<sub>3</sub>PO<sub>4</sub> addition on the yield, chemical composition, characteristic functional groups, macromolecular skeleton, graphite crystallites, and stability of biochar was studied in this paper using two-dimensional infrared correlation spectroscopy (2D-PCIS), X-ray photoelectron spectroscopy, Raman spectrum, and other characterization methods combined with thermal/chemical oxidation analysis. It is discovered that adding K<sub>3</sub>PO<sub>4</sub> may effectively minimize the graphitization temperature range and increase biochar's yield, aromaticity, H/C ratio, and proportion of refractory/recalcitrant organic carbon. The 2D-PCIS and Raman analysis revealed that K<sub>3</sub>PO<sub>4</sub> mostly promoted the dehydrogenation and polycondensation process of the aromatic rings in the char precursor, transforming the amorphous carbon structure of biochar into an ordered turbostratic microcrystalline structure. K<sub>3</sub>PO<sub>4</sub> enhanced biochar stability mostly at medium-high temperatures (350 ~ 750℃) by stimulating the transformation of unstable structures of biochar to stable carbon-containing structures or by inhibiting the interaction of its active sites with oxidants through the mineralization process. A 20% phosphorus addition increased biochar's refractory index (R<sub>50</sub>) by roughly 11%, and it also boosted biochar's oxidation resistance (H<sub>2</sub>O<sub>2</sub> or K<sub>2</sub>CrO<sub>4</sub>) efficiency, reducing carbon oxidation loss by up to 7.31%. However, at higher temperatures (> 750 ℃), the doping of phosphorus atoms into the carbon skeleton degraded the biochar structure's stability. The results of this study suggest that using exogenous phosphorus-containing additives is an efficient way to improve the stability of biochar.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"90 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocharPub Date : 2024-04-10DOI: 10.1007/s42773-024-00329-y
Nader Marzban, Judy A. Libra, Kyoung S. Ro, Daniela Moloeznik Paniagua, Vera Susanne Rotter, Barbara Sturm, Svitlana Filonenko
{"title":"Hydrochar stability: understanding the role of moisture, time and temperature in its physiochemical changes","authors":"Nader Marzban, Judy A. Libra, Kyoung S. Ro, Daniela Moloeznik Paniagua, Vera Susanne Rotter, Barbara Sturm, Svitlana Filonenko","doi":"10.1007/s42773-024-00329-y","DOIUrl":"https://doi.org/10.1007/s42773-024-00329-y","url":null,"abstract":"<p>Limited information is available about potential physicochemical changes that can occur in hydrochar post-production, e.g. during drying and storage. Understanding these changes is crucial not just for shaping future research plans, but also for future practical applications. Here we studied the effect of moisture (69.2% and 2.4%) and three storage temperatures (− 18, 4, and 20 °C) over a year on selected organic and inorganic compounds in hydrochar produced from the Hydrothermal carbonization (HTC) of digested cow manure. Comparison of the control wet hydrochars (WHs) and dry hydrochars (DHs) showed changes in organic compound composition due to drying. Overall, the total amount of the selected organic compounds was notably greater in WH (15.2 g kg<sup>−1</sup> DM) compared to DH (11.8 g kg<sup>−1</sup> DM), with variations observed in individual compound concentrations. Drying, however, had no significant influence on the identified inorganic compounds. Storage caused significant changes in both WH and DH, particularly in organic compounds after 12 weeks. Sugars (2–sevenfold), acids (36–371%), and aromatics (58–120%) in stored samples at week 52 were significantly higher than their control values. Changes in the inorganic elements (e.g., Co, K, Mg, Mn, P, S, Sr, and Zn) occurred faster in WH, with significant differences starting from week 1 compared to their control values, while DH showed fewer changes. Based on these changes in both organic and inorganic content, we recommend the optimal storage conditions for future HTC studies to preserve hydrochar properties. Finally, we discussed potential applications for stored hydrochars, with DH showing greater stability, especially at − 18 °C, making it suitable for various applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"52 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reinforced HDPE with optimized biochar content for material extrusion additive manufacturing: morphological, rheological, electrical, and thermomechanical insights","authors":"Nectarios Vidakis, Markos Petousis, Dimitrios Kalderis, Nikolaos Michailidis, Emmanuel Maravelakis, Vassilios Saltas, Nikolaos Bolanakis, Vassilis Papadakis, Mariza Spiridaki, Apostolos Argyros","doi":"10.1007/s42773-024-00314-5","DOIUrl":"https://doi.org/10.1007/s42773-024-00314-5","url":null,"abstract":"<p>The development of efficient and sustainable composites remains a primary objective of both research and industry. In this study, the use of biochar, an eco-friendly reinforcing material, in additive manufacturing (AM) is investigated. A high-density Polyethylene (HDPE) thermoplastic was used as the matrix, and the material extrusion (MEX) technique was applied for composite production. Biochar was produced from olive tree prunings via conventional pyrolysis at 500 °C. Composite samples were created using biochar loadings in the range of 2.0–10.0 wt. %. The 3D-printed samples were mechanically tested in accordance with international standards. Thermogravimetric analysis (TGA) and Raman spectroscopy were used to evaluate the thermal and structural properties of the composites. Scanning electron microscopy was used to examine the fractographic and morphological characteristics of the materials. The electrical/dielectric properties of HDPE/biochar composites were studied over a broad frequency range (10<sup>–2</sup> Hz–4 MHz) at room temperature. Overall, a laborious effort with 12 different tests was implemented to fully characterize the developed composites and investigate the correlations between the different qualities. This investigation demonstrated that biochar in the MEX process can be a satisfactory reinforcement agent. Notably, compared to the control samples of pure HDPE, biochar increased the tensile strength by over 20% and flexural strength by 35.9% when added at a loading of 4.0 wt. %. The impact strength and microhardness were also significantly improved. Furthermore, the Direct current (DC) conductivity of insulating HDPE increased by five orders of magnitude at 8.0 wt. % of biochar content, suggesting a percolation threshold. These results highlight the potential of C-based composites for the use in additive manufacturing to further exploit their applicability by providing parts with improved mechanical performance and eco-friendly profiles.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"52 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}