Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang
{"title":"氧化铁-氧化锰改性生物炭对汞和镉共污染稻田土壤的高效修复及其微生物群落响应","authors":"Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang","doi":"10.1007/s42773-024-00346-x","DOIUrl":null,"url":null,"abstract":"<p>Fe–Mn oxide modified biochar (FMBC) was produced to explore its potential for remediation of Hg–Cd contaminated paddy soils. The results showed that the application of FMBC decreased the contents of bioavailable Hg and Cd by 41.49–81.85% and 19.47–33.02% in contrast to CK, while the amount of labile organic carbon (C) fractions and C-pool management index (CPMI) was increased under BC and FMBC treated soils, indicating the enhancement of soil C storage and nutrient cycling function. Dry weight of different parts of <i>Oryza sativa</i> L. was enhanced after the addition of BC and FMBC, and the contents of Fe and Mn in root iron–manganese plaques (IMP) were 1.46–2.06 and 6.72–19.35 times higher than those of the control groups. Hg and Cd contents in brown rice under the FMBC treatments were significantly reduced by 18.32–71.16% and 59.52–72.11% compared with the control. FMBC addition altered the composition and metabolism function of soil bacterial communities, especially increasing the abundance of keystone phyla, including <i>Firmicutes</i>, <i>Proteobacteria and Actinobacteria.</i> Partial least squares path modelling (PLSPM) revealed that the contents of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>–Hg, DTPA–Cd and IMP were the key indicators affecting Hg and Cd accumulation in rice grains. These results demonstrate the simultaneous value of FMBC in remediation of Hg and Cd combined pollution and restoring soil fertility and biological productivity.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"43 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe–Mn oxide modified biochar and its microbial community responses\",\"authors\":\"Tong Sun, Ge Gao, Wenhao Yang, Yuebing Sun, Qingqing Huang, Lin Wang, Xuefeng Liang\",\"doi\":\"10.1007/s42773-024-00346-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fe–Mn oxide modified biochar (FMBC) was produced to explore its potential for remediation of Hg–Cd contaminated paddy soils. The results showed that the application of FMBC decreased the contents of bioavailable Hg and Cd by 41.49–81.85% and 19.47–33.02% in contrast to CK, while the amount of labile organic carbon (C) fractions and C-pool management index (CPMI) was increased under BC and FMBC treated soils, indicating the enhancement of soil C storage and nutrient cycling function. Dry weight of different parts of <i>Oryza sativa</i> L. was enhanced after the addition of BC and FMBC, and the contents of Fe and Mn in root iron–manganese plaques (IMP) were 1.46–2.06 and 6.72–19.35 times higher than those of the control groups. Hg and Cd contents in brown rice under the FMBC treatments were significantly reduced by 18.32–71.16% and 59.52–72.11% compared with the control. FMBC addition altered the composition and metabolism function of soil bacterial communities, especially increasing the abundance of keystone phyla, including <i>Firmicutes</i>, <i>Proteobacteria and Actinobacteria.</i> Partial least squares path modelling (PLSPM) revealed that the contents of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>–Hg, DTPA–Cd and IMP were the key indicators affecting Hg and Cd accumulation in rice grains. These results demonstrate the simultaneous value of FMBC in remediation of Hg and Cd combined pollution and restoring soil fertility and biological productivity.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00346-x\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00346-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
研究人员生产了氧化铁-氧化锰改性生物炭(FMBC),以探索其修复受汞-镉污染的稻田土壤的潜力。结果表明,施用 FMBC 与施用 CK 相比,生物可利用的汞和镉含量分别降低了 41.49%-81.85%和 19.47%-33.02%,而在 BC 和 FMBC 处理的土壤中,可溶性有机碳(C)组分的数量和 C 池管理指数(CPMI)均有所增加,表明土壤的 C 储存和养分循环功能得到了增强。添加 BC 和 FMBC 后,大麦不同部位的干重均有所增加,根部铁锰斑块(IMP)中铁和锰的含量分别是对照组的 1.46-2.06 倍和 6.72-19.35 倍。与对照组相比,FMBC 处理糙米中的汞和镉含量分别显著降低了 18.32%-71.16% 和 59.52%-72.11%。添加 FMBC 改变了土壤细菌群落的组成和代谢功能,特别是增加了关键菌门的丰度,包括固氮菌、变形菌和放线菌。偏最小二乘路径模型(PLSPM)显示,Na2S2O3-汞、DTPA-镉和 IMP 的含量是影响水稻谷粒中汞和镉积累的关键指标。这些结果表明,FMBC 在修复汞和镉联合污染、恢复土壤肥力和生物生产力方面同时具有重要价值。 图文摘要
High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe–Mn oxide modified biochar and its microbial community responses
Fe–Mn oxide modified biochar (FMBC) was produced to explore its potential for remediation of Hg–Cd contaminated paddy soils. The results showed that the application of FMBC decreased the contents of bioavailable Hg and Cd by 41.49–81.85% and 19.47–33.02% in contrast to CK, while the amount of labile organic carbon (C) fractions and C-pool management index (CPMI) was increased under BC and FMBC treated soils, indicating the enhancement of soil C storage and nutrient cycling function. Dry weight of different parts of Oryza sativa L. was enhanced after the addition of BC and FMBC, and the contents of Fe and Mn in root iron–manganese plaques (IMP) were 1.46–2.06 and 6.72–19.35 times higher than those of the control groups. Hg and Cd contents in brown rice under the FMBC treatments were significantly reduced by 18.32–71.16% and 59.52–72.11% compared with the control. FMBC addition altered the composition and metabolism function of soil bacterial communities, especially increasing the abundance of keystone phyla, including Firmicutes, Proteobacteria and Actinobacteria. Partial least squares path modelling (PLSPM) revealed that the contents of Na2S2O3–Hg, DTPA–Cd and IMP were the key indicators affecting Hg and Cd accumulation in rice grains. These results demonstrate the simultaneous value of FMBC in remediation of Hg and Cd combined pollution and restoring soil fertility and biological productivity.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.