Yefang Sun, Da Ouyang, Yiming Cai, Ting Guo, Mei Li, Xinlin Zhao, Qichun Zhang, Ruihuan Chen, Fangzhen Li, Xiujuan Wen, Lu Xie, Haibo Zhang
{"title":"Cupriavidus B-7 immobilized biochar: an effective solution for Cd accumulation alleviation and growth promotion in pakchoi (Brassica Chinensis L.)","authors":"Yefang Sun, Da Ouyang, Yiming Cai, Ting Guo, Mei Li, Xinlin Zhao, Qichun Zhang, Ruihuan Chen, Fangzhen Li, Xiujuan Wen, Lu Xie, Haibo Zhang","doi":"10.1007/s42773-024-00333-2","DOIUrl":null,"url":null,"abstract":"<p>Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain (<i>Cupriavidus</i> B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the <i>Cupriavidus</i> B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl<sub>2</sub>-extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of <i>Cupriavidus</i> B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and <i>Cupriavidus</i> B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"79 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00333-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain (Cupriavidus B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the Cupriavidus B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl2-extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of Cupriavidus B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and Cupriavidus B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.