{"title":"Investigations of thermal effects during pyrolysis of agro-forestry biomass and physicochemical characterizations of biofuel products","authors":"","doi":"10.1016/j.bcab.2024.103379","DOIUrl":"10.1016/j.bcab.2024.103379","url":null,"abstract":"<div><div>The development of biofuels from waste residues is critical due to higher emissions of greenhouse gases from petroleum and coal and rising energy demand. Converting agricultural and forestry biomass into biofuel products efficiently is a practical approach for simultaneously addressing renewable energy security and waste management challenges. This study examines the physicochemical characteristics of several agro-forestry residues such as camelina meal, mustard meal, flax straw, hemp straw and spruce wood to assess their suitability as feedstocks for pyrolysis to generate biochar, bio-oil and gases. An analysis was conducted to evaluate the influence of temperature (300–525 °C), heating rate (5–35 °C/min) and reaction time (30–75 min) to assess their impact on conversion efficiency and product distribution during pyrolysis. The optimal temperature, heating rate and reaction time for pyrolysis of camelina meal as a model biomass were determined to be 450 °C, 5 °C/min and 30 min, respectively. Physicochemical characteristics of biochar and bio-oil were analyzed to determine the impact of controlled thermal breakdown through slow pyrolysis. As the temperature increased, the calorific value, carbon content and thermal stability of biochar increased due to the removal of volatile matter and the development of aromatic carbon and phenolic features.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic potential of essential oils with antibiotics for antimicrobial resistance with emphasis on mechanism of action: A review","authors":"","doi":"10.1016/j.bcab.2024.103384","DOIUrl":"10.1016/j.bcab.2024.103384","url":null,"abstract":"<div><div>Antimicrobial resistance is a growing worldwide problem, and treatment failures are associated with enormous human health effects. Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) is a highly adaptable variant of bacteria exhibiting antimicrobial resistance, making it a formidable superbug. It became one of the leading causes of hospital and community-associated infections. This pathogen is resistant to most clinically available antibiotics by adopting several different genetic and molecular mechanisms. Such types of pathogen evolution and their resistance mechanisms have raised significant public health concerns, urging the exploration of novel therapeutic strategies. Essential oils (EOs) from various plants have garnered attention for their potential as alternative antimicrobial agents. Its different compounds synergistically led to enhance the potency and efficacy of antibiotics. Hence, this review focuses on recent advances used in the combination of EOs with antibiotics for therapeutic effects and the growing problem of antimicrobial resistance, various methods and mechanisms adopted for the action in synergistic combinations are discussed. Additionally, the etiology of MRSA as a superbug, and prospects for the development of the formulations are elaborated. Future study types would provide valuable insights into exploring different synergistic combinations of EOs and antibiotics to address the growing problem of drug resistance among bacterial pathogens.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of silver nanoparticles for antifungal activity against tomato fusarium wilt caused by Fusarium oxysporum","authors":"","doi":"10.1016/j.bcab.2024.103376","DOIUrl":"10.1016/j.bcab.2024.103376","url":null,"abstract":"<div><div><em>Fusarium</em> wilt caused by <em>Fusarium oxysporum</em> f. sp. <em>radicis-lycopersici</em> is one of the most important diseases in tomatoes, resulting in severe yield loss and mycotoxin infection in food and feed. The management of <em>Fusarium</em> wilt is based heavily on chemical fungicides, but these chemicals have many environmental concerns. Silver nanoparticles (AgNPs) are gaining importance as emerging resistance-free alternatives of chemical fungicides. In this study, AgNPs were synthesized using the aqueous leaf extract of <em>Viola odorata</em> as a green approach. The antifungal activity of these biosynthesised AgNPs was evaluated <em>in vitro</em> against <em>F. oxysporum</em> using the agar well diffusion method. AgNPs were also evaluated against tomato <em>Fusarium</em> wilt diseases using the foliar spray method in the greenhouse. The characterization of AgNPs revealed that AgNPs were of spherical shape, crystalline in nature, and had an average size of 18 nm. In the antifungal assay, 60 mg/l AgNPs strongly inhibited the growth of <em>F. oxysporum</em> with a growth zone of 18 ± 0.89 mm compared to fungicide (23 ± 1.20 mm) and AgNO<sub>3</sub> (52 ± 2.33 mm). Similarly, 60 mg/l of AgNPs when sprayed on tomato plants in the greenhouse showed a survival rate of about 80% with no observable phytotoxic effect. This study provides a first baseline to control <em>Fusarium</em> wilt in tomato using biosynthesised AgNPs without affecting the health of crops.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Future trends and patterns in diatom fatty acid research from a bibliometric standpoint","authors":"","doi":"10.1016/j.bcab.2024.103373","DOIUrl":"10.1016/j.bcab.2024.103373","url":null,"abstract":"<div><div>Diatoms are a significant repository of lipids, primarily storing triacylglycerols (TAGs), and serve as a crucial source of polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as well as fucoxanthin. Their versatile applications across medicine, food, cosmetics, aquaculture, and biofuel production underscore their value as a vital biological resource. This study employs bibliometric analysis to explore the publication trends related to diatom fatty acids (FAs) and their associated compounds, offering a comprehensive understanding of research trajectories from past to present, and indicating future directions. Analyzing 2286 articles from the Scopus database, published between 1959 and 2023, we identified the United States as the leading country in diatom FA research, with France as the most productive institution. The USA also leads in fostering international collaborations, engaging with 41 countries. Keyword co-occurrence analysis revealed that EPA and DHA have dominated research interests over the decades, with <em>Phaeodactylum tricornutum</em> emerging as the most frequently studied diatom strain. Initially focused on aquaculture, diatom research expanded to include bioindicator, environmental, and biofuel applications. Recently, fucoxanthin and chrysolaminarin, in combination with FAs, have gained prominence in pharmaceutical research. Additionally, the exploration of metabolic pathways through transcriptomic analysis has become increasingly significant. This study identifies several research gaps in diatom FA research, paving the way for future investigations. We advocate for continued research to fully harness diatom FAs as sustainable biological resources for key industries, including biofuels, feed, food, and pharmaceuticals.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of chemical components and quality evaluation of Panax ginseng and its processed products from different habitats in Northeastern China","authors":"","doi":"10.1016/j.bcab.2024.103375","DOIUrl":"10.1016/j.bcab.2024.103375","url":null,"abstract":"<div><div>Ginseng (Panax ginseng C.A. Meyer) is a widely used dietary supplement in Traditional Chinese Medicine due to its numerous health-promoting properties. However, limited research is available on the distinctions in the chemical composition between different ginsengs. Hence, this study explores the chemical composition of different ginsengs obtained from different habitats in Northeastern China. The fresh, red, and white ginsengs were collected from different places in the Jilin province, China. Ginsenoside and non-ginsenoside contents in the ginseng extracts were analyzed by an Ultra-high performance liquid chromatography system & VION® ion mobility hybrid Quadrupole Time-of-Flight. The results show a notable difference in the ginsenoside content among the samples. The qualification ratio of ginsenoside Re, Rg1, and Rb was 46.2%, with Re being the most abundant, followed by Rg1 and Rb1 in all the ginseng analyzed. Furthermore, the study revealed that white and red ginseng had higher total ginsenosides (8.18 ± 0.04 mg/kg) and total polysaccharides (17.4%) content, respectively. The fresh ginseng samples exhibited higher protein content (20.02 ± 0.2 g/100g) and lower fat content (2.0 g/100g) than others. Further, the ginseng samples analyzed in this study met the requirements specified in the Chinese Pharmacopoeia for total ash, heavy metals, and organochlorine pesticide residues. This study offers a comprehensive comparative analysis of the chemical composition of <em>P. ginseng</em> sourced from various habitats in Northeastern China. It underscores the significance of making informed choices when selecting ginseng types for scientific evaluation.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Sinorhizobium strains isolated from arid and semi-arid areas of Morocco promoting the growth of Vachellia gummifera","authors":"","doi":"10.1016/j.bcab.2024.103369","DOIUrl":"10.1016/j.bcab.2024.103369","url":null,"abstract":"<div><p><em>Vachellia gummifera</em> is a nitrogen-fixing shrub endemic to Morocco, and represents a suitable candidate for reforestation programs in dry areas. In this study, we identified seven root microsymbionts of <em>V. gummifera</em>, and determined their phenotypic characteristics, Plant Growth-Promoting (PGP) activities and their symbiotic efficiency. The bacteria were isolated from root nodules of the plant grown in Moroccan forest soils located in arid and semi-arid regions. The 16S rRNA gene sequences analysis of seven isolates showed similarity values ranging from 99.85% to 99.92% with <em>Sinorhizobium fredii</em> USDA205<sup>T</sup>. The phenotypic analyses displayed that the strains use different carbohydrates, mainly mono and di-saccharides, as a sole carbon source, and 13 out of 15 amino acids tested as the sole nitrogen source. The strains have variable tolerance to heavy metals, but are sensitive to salinity and high temperature, as no one grew in the presence of 2% NaCl (w/v) or at 40 °C, respectively. On the other hand, the strains grew in a very high osmotic stress environment induced by PEG 6000 (20% w/v), and they all grow in a pH range between 6.5 and 9. The strains possess PGP activities, such as phosphate solubilization, siderophore, and indole acetic acid production. Inoculation under axenic conditions showed that the strains increased the aerial biomass of inoculated plants up to 217%, whereas the relative symbiotic efficiency percentages (74.87–140,3%) showed that most strains are very efficient. From all these results we concluded that our strains may be proposed as inoculum for large-scale applications, such as reforestation programs.</p></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sodium alginate improves phytase stability and enhances soil phosphorous utilization","authors":"","doi":"10.1016/j.bcab.2024.103372","DOIUrl":"10.1016/j.bcab.2024.103372","url":null,"abstract":"<div><div>A plant growth-promoting endophytic strain <em>Bacillus</em> sp. WR11 produces high-level phytase. Phytase degrades phytate, which is the major form of organic phosphate in soils that cannot be readily utilized by plants. To strengthen the strain or its phytase for cost-efficient biodegradation of phytate, we compared the impacts of different chemical additives on phytase production and preservation. Phytate degradation ability in soils and growth promotion effect in wheat were evaluated. To ensure safe application, potential pathogenicity of the strain was also predicted. Phytase activity assay suggests that sodium alginate (SA) significantly improves phytase production to as higher as 2.21-fold, but has little influence on the growth of WR11 during liquid fermentation. During liquid storage of cell-free supernatant (CFS) at room temperature, SA maintains 68% phytase activity indicating significantly improved stability within four weeks. Determination of water-soluble P and phytate-P indicates <em>Bacillus</em> sp. WR11 and CFS effectively degrade 20.17–38.55% phytate in soils. Quantification of biomass, phosphorus and iron contents shows positive effect of WR11 and its CFS on wheat growth. Particularly, the degradation ability (63.2%) and growth promoting effect of CFS is much stronger in the presence of 0.8% SA. Genomic prediction demonstrates strain WR11 has a large number of genes in the databases of Pathogen-Host Interactions, Virulence Factors of pathogenic bacteria, Antibiotic Resistance Genes, and the Comprehensive Antibiotic Research Database, respectively. In conclusion, SA significantly improves phytase production and phytate degradation. Phytase accompanied with SA may be an alternative strategy for phytate degradation and plant growth promotion, when microorganisms have safety issues.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harnessing microbial potential: Exploiting heavy oil-laden soil microbiota for sustainable production of high-yield rhamnolipids from waste cooking oil","authors":"","doi":"10.1016/j.bcab.2024.103371","DOIUrl":"10.1016/j.bcab.2024.103371","url":null,"abstract":"<div><div>Oil polluted soil microbiota plays an important role in the production of biosurfactants. In comparison to synthetic surfactants, biosurfactants offer unique advantages, such as lower toxicity, biodegradability, selectivity, and effectiveness under unpleasant conditions. Despite these benefits, the widespread use of biosurfactants is limited by enormous production costs. To address this challenge, this study aimed to explore the adoption of waste cooking for rhamnolipids production. Two prominent bacterial strains: <em>Kosakonia cowanni</em> and <em>Acinetobacter colcoaceticus,</em> were obtained from heavy oil-laden soil samples, and further demonstrated their capability for rhamnolipids production from waste cooking oil (<em>Acinetobacter colcoaceticus</em>: 0.51 g/L, <em>Kosakonia cowanii</em>: 0.39 g/L). The biosurfactants obtained were characterized through TLC, FTIR, and H NMR to confirm their rhamnolipid identities as mono-rhamnolipids. The findings in our study emphasizes the potential of cost-effective production of rhamnolipids that possess interesting biotechnological features through the synergy of oil-polluted environments and waste cooking oil. This study contributes significantly to the development of sustainable rhamnolipid production using non-pathogenic strains. By harnessing these microorganisms, we advance towards addressing critical environmental challenges, such as heavy metal contamination in water. This research aligns with broader sustainability goals, including clean water and sanitation.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Management of abiotic and biotic stresses by microbiome-based engineering of the rhizosphere","authors":"","doi":"10.1016/j.bcab.2024.103365","DOIUrl":"10.1016/j.bcab.2024.103365","url":null,"abstract":"<div><p>The rhizosphere is one of the most dynamic sites in plants, where continuous interaction is going on between the complex microbial community and the plant cell. These microorganisms impart different effects on plants, depending on the type of microorganism and the surrounding environment. Such interactions basically depend on the composition of root exudates secreted by the plant, and these interactions have either beneficial or deleterious effects on the plant. The beneficial microbes play a very diverse role in the growth and survival of the plant in different environmental states. With an increase in food demand for the growing population on limited crop land, there is a requirement for the tool to have the potential to enhance crop productivity in an eco-friendly manner. So, rhizospheric engineering is the preferred tool for enhanced crop productivity, where different microbes with different potentials need to be identified for sustainable crop productivity. In the rhizosphere, a microbial consortium has been generated, with the group of microorganisms having the ability to overcome the effects of stress factors on the survival of the associated plant. Such microbial consortiums identified against different environmental stresses are allowed to remain associated with the plant root in different stress conditions for sustainable crop productivity.</p></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoparticle-mediated modulation of plant performance and microbiome dynamics: Insights into interplay mechanisms","authors":"","doi":"10.1016/j.bcab.2024.103366","DOIUrl":"10.1016/j.bcab.2024.103366","url":null,"abstract":"<div><p>Contemporary agricultural practices extensively depend on synthetic fertilizers to boost crop productivity by providing essential nutrients. While effective in the short term, their prolonged use can negatively affect soil fertility and disrupt the nutrient balance of the rhizospheric microbiome. As an innovative and environmentally sustainable alternative, nanotechnology introduces nanofertilizers that offer targeted delivery and efficient nutrient utilization. Nanoparticles (NPs) have demonstrated versatility in plant research, functioning as growth regulators, antimicrobial agents, biosensors, fertilizers, and pesticides. Additionally, plants play a significant role in the advancement of nanotechnology through their ability to synthesize NPs and inspire plant-based nanobionics. Despite their potential, the complex interactions between NPs and plants, especially in the context of heavy metal (HM) stress, remain insufficiently explored. This selective review focuses on the role of the plant microbiome in alleviating HM stress and how NPs can be utilized in phytoremediation strategies. We examine the dual mechanisms of direct heavy metal absorption by plants and the modulation of the plant microbiome, highlighting how NPs can influence both plant health and microbial diversity under HM stress. By investigating these interconnected aspects, this review aims to provide insights into nutrient management and environmental remediation, promoting a more comprehensive understanding of the synergistic effects between NPs, plants, and their associated microbiomes.</p></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}