{"title":"Membrane localization of LGG-1/GABARAP is dispensable for autophagy in <i>C. elegans</i>.","authors":"Romane Leboutet, Céline Largeau, Emmanuel Culetto, Christophe Lefebvre, Thorsten Hoppe, Renaud Legouis","doi":"10.1080/15548627.2023.2249393","DOIUrl":"10.1080/15548627.2023.2249393","url":null,"abstract":"<p><p>Most of the functions of LC3/GABARAP in macroautophagy/autophagy are considered to depend on their association with the phagophore membrane through a conjugation to a lipid. Using site-directed mutagenesis, we inhibited the conjugation of LGG-1, the single homolog of GABARAP in <i>C. elegans</i>. Mutants that express only cytosolic forms revealed an essential role for the cleaved form of LGG-1 in autophagy but also in an autophagy-independent embryonic function.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3254-3255"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10115878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2023-12-01Epub Date: 2023-08-17DOI: 10.1080/15548627.2023.2246858
Xin Tong, Jia-Jia Zhao, Ya-Lan Feng, Xian-Bing Wang
{"title":"The small peptide VISP1 acts as a selective autophagy receptor regulating plant-virus interactions.","authors":"Xin Tong, Jia-Jia Zhao, Ya-Lan Feng, Xian-Bing Wang","doi":"10.1080/15548627.2023.2246858","DOIUrl":"10.1080/15548627.2023.2246858","url":null,"abstract":"<p><p>Selective macroautophagy/autophagy is tightly regulated by cargo receptors that recruit specific substrates to the ATG8-family proteins for autophagic degradation. Therefore, identification of selective receptors and their new cargoes will improve our understanding of selective autophagy functions in plant development and stress responses. We have recently demonstrated that the small peptide VISP1 acts as a selective autophagy receptor to mediate degradation of suppressors of RNA silencing (VSRs) of several RNA and DNA viruses. Moreover, VISP1 induces symptom recovery through fine-tuning the balance of plant immunity and virus pathogenicity. Our findings provide new insights into the double-edged sword roles of selective autophagy in plant-virus interactions.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3246-3247"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10009169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lactate is a bridge linking glycolysis and autophagy through lactylation.","authors":"Weixia Sun, Mengshu Jia, Yingyan Feng, Xiawei Cheng","doi":"10.1080/15548627.2023.2246356","DOIUrl":"10.1080/15548627.2023.2246356","url":null,"abstract":"<p><p>Lactate is a glycolysis product that is produced from pyruvate by LDH (lactate dehydrogenase) and plays an important role in physiological and pathological processes. However, whether lactate regulates autophagy is still unknown. We recently reported that LDHA is phosphorylated at serine 196 by ULK1 (unc-51 like kinase 1) under nutrient-deprivation conditions, promoting lactate production. Then, lactate mediates PIK3C3/VPS34 lactylation at lysine 356 and lysine 781 via acyltransferase KAT5/TIP60. PIK3C3/VPS34 lactylation enhances the association of PIK3C3/VPS34 with BECN1 (beclin 1, autophagy related), ATG14 and UVRAG, increases PIK3C3/VPS34 lipid kinase activity, promotes macroautophagy/autophagy and facilitates the endolysosomal degradation pathway. PIK3C3/VPS34 hyperlactylation induces autophagy and plays an essential role in skeletal muscle homeostasis and cancer progression. Overall, this study describes an autophagy regulation mechanism and the integration of two highly conserved life processes: glycolysis and autophagy.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3240-3241"},"PeriodicalIF":13.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10019341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2023-12-01Epub Date: 2023-08-18DOI: 10.1080/15548627.2023.2246857
Han Nim Lee, Sarika K Marathe, Marisa S Otegui
{"title":"Chloroplast microautophagy: A green role for NBR1.","authors":"Han Nim Lee, Sarika K Marathe, Marisa S Otegui","doi":"10.1080/15548627.2023.2246857","DOIUrl":"10.1080/15548627.2023.2246857","url":null,"abstract":"","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3244-3245"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2023-12-01Epub Date: 2023-07-18DOI: 10.1080/15548627.2023.2236485
Heather Tsong, Erika Lf Holzbaur, Andrea Kh Stavoe
{"title":"Aging Differentially Affects Axonal Autophagosome Formation and Maturation.","authors":"Heather Tsong, Erika Lf Holzbaur, Andrea Kh Stavoe","doi":"10.1080/15548627.2023.2236485","DOIUrl":"10.1080/15548627.2023.2236485","url":null,"abstract":"<p><p>Misregulation of neuronal macroautophagy/autophagy has been implicated in age-related neurodegenerative diseases. We compared autophagosome formation and maturation in primary murine neurons during development and through aging to elucidate how aging affects neuronal autophagy. We observed an age-related decrease in the rate of autophagosome formation leading to a significant decrease in the density of autophagosomes along the axon. Next, we identified a surprising increase in the maturation of autophagic vesicles in neurons from aged mice. While we did not detect notable changes in endolysosomal content in the distal axon during early aging, we did observe a significant loss of acidified vesicles in the distal axon during late aging. Interestingly, we found that autophagic vesicles were transported more efficiently in neurons from adult mice than in neurons from young mice. This efficient transport of autophagic vesicles in both the distal and proximal axon is maintained in neurons during early aging, but is lost during late aging. Our data indicate that early aging does not negatively impact autophagic vesicle transport nor the later stages of autophagy. However, alterations in autophagic vesicle transport efficiency during late aging reveal that aging differentially impacts distinct aspects of neuronal autophagy.<b>Abbreviations:</b> ACAP3: ArfGAP with coiled-coil, ankyrin repeat and PH domains 3; ARF6: ADP-ribosylation factor 6; ATG: autophagy related; AVs: autophagic vesicles; DCTN1/p150<sup>Glued</sup>: dynactin 1; DRG: dorsal root ganglia; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; LAMP2: lysosomal-associated protein 2; LysoT: LysoTracker; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK8IP1/JIP1: mitogen-activated protein kinase 8 interacting protein 1; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; mCh: mCherry; PE: phosphatidylethanolamine.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3079-3095"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9834271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autophagy is regulated by endoplasmic reticulum calcium homeostasis and sphingolipid metabolism.","authors":"Shiyan Liu, Mutian Chen, Yichang Wang, Huihui Li, Shiqian Qi, Jia Geng, Kefeng Lu","doi":"10.1080/15548627.2023.2249761","DOIUrl":"10.1080/15548627.2023.2249761","url":null,"abstract":"<p><p>Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in <i>Saccharomyces cerevisiae</i>, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of <i>CSG2</i> causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3256-3257"},"PeriodicalIF":14.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2023-11-01Epub Date: 2023-07-14DOI: 10.1080/15548627.2023.2233847
Huijun Zhang, Xiangwei Wang, Min Qu, Zhiyong Li, Xiangping Yin, Lijie Tang, Xiangtao Liu, Yuefeng Sun
{"title":"Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication.","authors":"Huijun Zhang, Xiangwei Wang, Min Qu, Zhiyong Li, Xiangping Yin, Lijie Tang, Xiangtao Liu, Yuefeng Sun","doi":"10.1080/15548627.2023.2233847","DOIUrl":"10.1080/15548627.2023.2233847","url":null,"abstract":"<p><p>Macroautophagy/autophagy has been utilized by many viruses, including foot-and-mouth disease virus (FMDV), to facilitate replication, while the underlying mechanism of the interplay between autophagy and innate immune responses is still elusive. This study showed that HDAC8 (histone deacetylase 8) inhibits FMDV replication by regulating innate immune signal transduction and antiviral response. To counteract the HDAC8 effect, FMDV utilizes autophagy to promote HDAC8 degradation. Further data showed that FMDV structural protein VP3 promotes autophagy during virus infection and interacts with and degrades HDAC8 in an AKT-MTOR-ATG5-dependent autophagy pathway. Our data demonstrated that FMDV evolved a strategy to counteract host antiviral activity by autophagic degradation of a protein that regulates innate immune response during virus infection.<b>Abbreviations</b>: 3-MA: 3-methyladenine; ATG: autophagy related; Baf-A1: bafilomycin A<sub>1</sub>; CCL5: C-C motif chemokine ligand 5; Co-IP: co-immunoprecipitation; CQ: chloroquine phosphate; DAPI: 4\",6-diamidino-2-phenylindole; FMDV: foot-and-mouth disease virus; HDAC8: histone deacetylase 8; ISG: IFN-stimulated gene; IRF3: interferon regulatory factor 3; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MAVS: mitochondria antiviral signaling protein; OAS: 2\"-5'-oligoadenylate synthetase; RB1: RB transcriptional corepressor 1; SAHA: suberoylanilide hydroxamic acid; TBK1: TANK binding kinase 1; TCID<sub>50</sub>: 50% tissue culture infectious doses; TNF/TNF-α: tumor necrosis factor; TSA: trichostatin A; UTR: untranslated region.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"2869-2883"},"PeriodicalIF":14.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}