{"title":"自噬受内质网钙稳态和鞘脂代谢的调节。","authors":"Shiyan Liu, Mutian Chen, Yichang Wang, Huihui Li, Shiqian Qi, Jia Geng, Kefeng Lu","doi":"10.1080/15548627.2023.2249761","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in <i>Saccharomyces cerevisiae</i>, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of <i>CSG2</i> causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3256-3257"},"PeriodicalIF":14.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621283/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autophagy is regulated by endoplasmic reticulum calcium homeostasis and sphingolipid metabolism.\",\"authors\":\"Shiyan Liu, Mutian Chen, Yichang Wang, Huihui Li, Shiqian Qi, Jia Geng, Kefeng Lu\",\"doi\":\"10.1080/15548627.2023.2249761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in <i>Saccharomyces cerevisiae</i>, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of <i>CSG2</i> causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.</p>\",\"PeriodicalId\":8722,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"3256-3257\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621283/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2023.2249761\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15548627.2023.2249761","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Autophagy is regulated by endoplasmic reticulum calcium homeostasis and sphingolipid metabolism.
Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in Saccharomyces cerevisiae, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of CSG2 causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.
期刊介绍:
Autophagy is a peer-reviewed journal that publishes research on autophagic processes, including the lysosome/vacuole dependent degradation of intracellular material. It aims to be the premier journal in the field and covers various connections between autophagy and human health and disease, such as cancer, neurodegeneration, aging, diabetes, myopathies, and heart disease. Autophagy is interested in all experimental systems, from yeast to human. Suggestions for specialized topics are welcome.
The journal accepts the following types of articles: Original research, Reviews, Technical papers, Brief Reports, Addenda, Letters to the Editor, Commentaries and Views, and Articles on science and art.
Autophagy is abstracted/indexed in Adis International Ltd (Reactions Weekly), EBSCOhost (Biological Abstracts), Elsevier BV (EMBASE and Scopus), PubMed, Biological Abstracts, Science Citation Index Expanded, Web of Science, and MEDLINE.