Assay and drug development technologies最新文献

筛选
英文 中文
Drug Repurposing Patent Applications April-June 2023. 药物再利用专利申请2023年4月至6月。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-08-01 Epub Date: 2023-09-01 DOI: 10.1089/adt.2023.081
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications April-June 2023.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2023.081","DOIUrl":"10.1089/adt.2023.081","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 6","pages":"288-295"},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10307238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for Assay and Drug Development Technologies. 罗莎琳德·富兰克林协会自豪地宣布了2022年测定和药物开发技术奖获得者。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-07-01 DOI: 10.1089/adt.2023.29104.rfs2022
Anaelle da Costa
{"title":"Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for <i>Assay and Drug Development Technologies</i>.","authors":"Anaelle da Costa","doi":"10.1089/adt.2023.29104.rfs2022","DOIUrl":"https://doi.org/10.1089/adt.2023.29104.rfs2022","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"189"},"PeriodicalIF":1.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10207812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Cytotoxic Activity of 6-Mercaptopurine-Loaded Solid Lipid Nanoparticles in Hepatic Cancer Treatment. 6-巯基嘌呤负载的固体脂质纳米颗粒在肝癌治疗中的细胞毒活性增强。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-07-01 DOI: 10.1089/adt.2023.007
Ahmet Doğan Ergin, Çağatay Oltulu, Büşra Koç
{"title":"Enhanced Cytotoxic Activity of 6-Mercaptopurine-Loaded Solid Lipid Nanoparticles in Hepatic Cancer Treatment.","authors":"Ahmet Doğan Ergin,&nbsp;Çağatay Oltulu,&nbsp;Büşra Koç","doi":"10.1089/adt.2023.007","DOIUrl":"https://doi.org/10.1089/adt.2023.007","url":null,"abstract":"<p><p>6-Mercaptopurine (6-MCP) is an antiproliferative purine analog used in acute lymphoblastic leukemia, non-Hodgkin lymphoma, and inflammatory bowel disease (Crohn's disease, ulcerative colitis). Although 6-MCP has the great therapeutic potential for cancer and immunosuppressant-related diseases, 6-MCP is not readily soluble in water, presents a high first-pass effect, short half-life (0.5-1.5 h), and implies a low bioavailability (16%). On the contrary, solid lipid nanoparticles (SLNs) are prepared from solid lipids at room temperature and body temperature. In this study, SLNs were prepared w/o/w double emulsion-solvent evaporation method using Precirol ATO5 as matrix lipid. In the emulsion stabilization, surfactant (Tween 80) and polymeric stabilizer (polyvinyl alcohol [PVA]) were used. Two group formulations using Tween 80 and PVA were compared in terms of particle size, polydispersity index, zeta potential encapsulation efficiency%, and process yield%. Differential calorimetric analysis and release properties were examined for optimum formulation, and release kinetics were calculated. According to studies, sustained release was obtained with SLNs by the Korsmayer-Peppas kinetic model. The <i>in vitro</i> cytotoxicity studies were performed on the hepatocarcinoma (HEP3G) cell line. According to the results, successful SLN formulations were produced, and PVA was found best stabilizer. Optimum formulation exhibited significantly higher cytotoxic effects on HEP3G than on pure 6-MCP. These results demonstrated that solid lipid nanodrug delivery systems have great potential for formulation of 6-MCP.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"212-221"},"PeriodicalIF":1.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10519881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biosensor Assays Types and Their Roles Toward Ligand-Receptor Interactions in Drug Discovery. 生物传感器检测类型及其在药物发现中配体-受体相互作用中的作用。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-07-01 DOI: 10.1089/adt.2023.003
Garima Gupta, Kanupriya Jha, Sarika Chaudhary
{"title":"Biosensor Assays Types and Their Roles Toward Ligand-Receptor Interactions in Drug Discovery.","authors":"Garima Gupta,&nbsp;Kanupriya Jha,&nbsp;Sarika Chaudhary","doi":"10.1089/adt.2023.003","DOIUrl":"https://doi.org/10.1089/adt.2023.003","url":null,"abstract":"<p><p>Ligand-receptor interactions (LRIs) are the basis for all the biological processes taking place in living cells and have been exploited to develop and implement in medical field a number of highly sensitive biosensors for the detection of various biomarkers in complex biological fluids. Drug-target interactions, one of the LRIs, are important to understand the biological processes that further help in developing new and better therapeutic molecules. Biosensors based on these interactions give us an idea for the need of modification of existing drugs or to develop new drugs. Common approach to develop biosensors requires the labeling; however, label-free systems provide advantages in avoiding the chances of conformational changes, off-site labeling, and labeling-based hindrances, thus saving time and effort toward assay development. Preliminary drug screening assays are carried out in two-dimensional (2D) models, followed by animal models, which require huge capital investment to reach from bench-top to clinical trials, where only 21% of new compounds make way to phase-1 clinical trials. Three-dimensional culture or organoid culture or organ-on-chip technology has made way for predictive and complex <i>in vitro</i> approach that recapitulates human physiology and represents more similar <i>in vivo</i> behavior than 2D. Multiplexing and nanotechnology have remarkably enhanced the efficacy of biosensors and might lead to a generation of miniaturized biosensors and more than just point-of-care kits. This review provides in-depth analysis of different types of biosensor assays based on drug-target interactions, their advantages, and limitations based on cost, sensitivity, and selectivity and industrial applications.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"190-201"},"PeriodicalIF":1.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9875938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
TWIST1 Promotes Colorectal Carcinoma Stemness and Oxaliplatin Resistance by Activating Microfibrillar-Associated Protein 2. TWIST1通过激活微纤维相关蛋白2促进结直肠癌干性和奥沙利铂耐药
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-07-01 DOI: 10.1089/adt.2022.099
Ying Liu, Minhan Chen, Bo Wu
{"title":"TWIST1 Promotes Colorectal Carcinoma Stemness and Oxaliplatin Resistance by Activating Microfibrillar-Associated Protein 2.","authors":"Ying Liu,&nbsp;Minhan Chen,&nbsp;Bo Wu","doi":"10.1089/adt.2022.099","DOIUrl":"https://doi.org/10.1089/adt.2022.099","url":null,"abstract":"<p><p>Colorectal carcinoma (CRC) is a fatal disease and ranks as the third most prevalent cancer globally. Stemness and drug resistance are the main causes of tumor recurrence in CRC. This study attempted to probe the impact of TWIST1 on CRC stemness and resistance to oxaliplatin and to uncover the underlying regulatory mechanism of TWIST1. mRNA expression data from The Cancer Genome Atlas-CRC were subjected to differential analysis. The target gene in the study was determined according to literature citation. ChIPBase was utilized to predict likely targets downstream of the target gene. Pearson was employed for correlation analysis. Quantitative real-time polymerase chain reaction was used to assess TWIST1 and microfibrillar-associated protein 2 (MFAP2) levels in CRC and normal cells. The cell viability was assayed through cell counting kit-8 and IC<sub>50</sub> value was calculated. Flow cytometry was applied to assay the cell apoptosis. Apoptosis assays were applied to evaluate cell apoptosis. CD44, CD133, SOX-2, ERCC1, GST-π, MRP, and P-gp protein expression levels were assayed by Western blot. The targeting relationship between TWIST1 and MFAP2 was ascertained through dual-luciferase and chromatin immunoprecipitation (ChIP). TWIST1 possessed high expression in CRC tissue and cells. TWIST1 knockdown strikingly promoted cell apoptosis and reduced cell stemness and cell resistance to oxaliplatin. Bioinformatics prediction suggested that MFAP2, which was overexpressed in CRC tissue and cells, was the target gene downstream of TWIST1. Dual-luciferase and ChIP assays validated that there was a targeting relationship between TWIST1 and MFAP2. The results of the rescue assay demonstrated that TWIST1 fostered CRC stemness and oxaliplatin resistance by activating MFAP2 expression. These outcomes implied that TWIST1 enhanced CRC stemness and oxaliplatin resistance by activating the transcription of MFAP2. Therefore, TWIST1/MFAP2 axis possibly indicated a mechanism for regulating tumor progression.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"202-211"},"PeriodicalIF":1.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Synthesis, Molecular Docking, and Biological Evaluation of Isatin-Based Fused Heterocycles As Epidermal Growth Factor Receptor Inhibitors. 基于isatin的融合杂环表皮生长因子受体抑制剂的设计、合成、分子对接和生物学评价。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-07-01 DOI: 10.1089/adt.2022.120
Ankush Kumar, Bhupinder Kumar, Rohit Bhatia
{"title":"Design, Synthesis, Molecular Docking, and Biological Evaluation of Isatin-Based Fused Heterocycles As Epidermal Growth Factor Receptor Inhibitors.","authors":"Ankush Kumar,&nbsp;Bhupinder Kumar,&nbsp;Rohit Bhatia","doi":"10.1089/adt.2022.120","DOIUrl":"https://doi.org/10.1089/adt.2022.120","url":null,"abstract":"<p><p>A series of isatin-based fused heterocycles were designed, synthesized, and evaluated for anticancer activity against four cancer cell lines: MCF-7, MDA-MB-231, A549, and HL-60. Among them, Q<sub>3</sub> and T<sub>4</sub> were found to be potent anticancer agents. Furthermore, two compounds Q<sub>3</sub> and T<sub>4</sub> were selected for epidermal growth factor receptor (EGFR) inhibitory activity. Two compounds Q<sub>3</sub> and T<sub>4</sub> were found to be most potent EGFR inhibitors with IC<sub>50</sub> of 0.22 ± 0.10 and 0.19 ± 0.07 μM. The EGFR inhibitory activity of standard drug erlotinib was 0.08 ± 0.02 μM. Structural Activity Relationship studies showed that electronegative atoms were necessary for EGFR inhibitory potential. Finally, molecular docking studies were carried out to check the binding pattern of synthesized derivatives with the adenosine triphosphate (ATP) binding site of EGFR and results revealed that compounds Q<sub>3</sub> (-9.2 kcal/mol) and T<sub>4</sub> (-8.9 kcal/mol) exhibited better binding affinity than reference drug erlotinib (-7.3 kcal/mol).</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"222-233"},"PeriodicalIF":1.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10250656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Repurposing Patent Applications January-March 2023. 药物再利用专利申请2023年1月至3月。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-05-01 DOI: 10.1089/adt.2023.030
Hermann A M Mucke
{"title":"Drug Repurposing Patent Applications January-March 2023.","authors":"Hermann A M Mucke","doi":"10.1089/adt.2023.030","DOIUrl":"https://doi.org/10.1089/adt.2023.030","url":null,"abstract":"","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 4","pages":"180-187"},"PeriodicalIF":1.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9655045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Silico Design, Synthesis, and Pharmacological Evaluation of Oxadiazole-Based Selective Cyclo-oxygenase-2 Inhibitors. 基于噁二唑的选择性环氧合酶-2 抑制剂的硅内设计、合成和药理评估。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-05-01 DOI: 10.1089/adt.2022.090
Manish Kumar, Isha Rani, Somdutt Mujwar, Rakesh Narang, Manish Devgun, Sukhbir Lal Khokra
{"title":"<i>In-Silico</i> Design, Synthesis, and Pharmacological Evaluation of Oxadiazole-Based Selective Cyclo-oxygenase-2 Inhibitors.","authors":"Manish Kumar, Isha Rani, Somdutt Mujwar, Rakesh Narang, Manish Devgun, Sukhbir Lal Khokra","doi":"10.1089/adt.2022.090","DOIUrl":"10.1089/adt.2022.090","url":null,"abstract":"<p><p>A series of oxadiazole-based five-membered heterocyclic derivatives was designed and synthesized with the intent of exclusive cyclo-oxygenase-2 (COX-2) inhibition to acquire anti-inflammatory activity without the presence of gastric toxicity. Oxadiazole-based novel analogs were designed by using bioisosteric substitutions and were screened against the macromolecular target by using docking-based virtual screening to identify their potential inhibitors. These selective COX-2 inhibitors were further evaluated for their stability within the binding cavity of macromolecular complex by performing molecular dynamic simulation for 100 ns. Selected compounds were synthesized by using Naphthalene-2-yl-acetic acid as a starting material based on the fundamental structure of naphthalene. The naphthalene ring and methylene bridge of naphthalene-2-yl-acetic acid were retained in the rational molecular design by replacing the carboxyl group with biologically significant groups like 1,3,4-oxadiazoles, with the goal of obtaining a novel, superior, and relatively safe anti-inflammatory molecule with better efficacy and optimized pharmacokinetics. Anti-inflammatory as well as analgesic properties of the compounds were evaluated experimentally for their pharmacological efficiency.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 4","pages":"166-179"},"PeriodicalIF":1.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9645392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Losartan Plays a Fungistatic and Fungicidal Activity Against Candida albicans Biofilms: Drug Repurposing for Localized Candidosis. 洛沙坦对白色念珠菌生物膜具有抑菌和杀菌作用:针对局部念珠菌病的药物再利用。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-05-01 Epub Date: 2023-05-25 DOI: 10.1089/adt.2023.013
Vanessa Soares Lara, Rafaela Alves da Silva, Tatiane Ponteado Ferrari, Carlos Ferreira Dos Santos, Sandra Helena Penha de Oliveira
{"title":"Losartan Plays a Fungistatic and Fungicidal Activity Against <i>Candida albicans</i> Biofilms: Drug Repurposing for Localized Candidosis.","authors":"Vanessa Soares Lara, Rafaela Alves da Silva, Tatiane Ponteado Ferrari, Carlos Ferreira Dos Santos, Sandra Helena Penha de Oliveira","doi":"10.1089/adt.2023.013","DOIUrl":"10.1089/adt.2023.013","url":null,"abstract":"<p><p>Candidosis is one of the most frequent opportunistic infections and exhibits variable clinical presentations, including oral localized forms. Drugs affecting the renin-angiotensin system targets inhibit secreted aspartic proteases from <i>Candida albicans</i>. The objective of the study was to evaluate whether losartan has antimicrobial action against <i>C. albicans</i> biofilms. Biofilms were treated with losartan or aliskiren (for comparison) for 24 h. Metabolic activity of viable cells and growth inhibition of <i>C. albicans</i> biofilms were assessed using XTT [2,3-Bis(2-Methoxy-4-Nitro-5-Sulfophenyl)-5-[(Phenyl-Amino)Carbonyl]-2H-Tetrazolium Hydroxide] and colony-forming unit assays, respectively. In addition, the cytotoxicity of the drugs on human cells was evaluated using the AlamarBlue assay. Both drugs decreased fungal viability at all concentrations. In addition, all concentrations of losartan inhibited the growth of <i>C. albicans</i> biofilm, ranging from 47% to 88.5%, whereas aliskiren showed inhibition from 1 to 10 mg/mL, which ranged from 16% to 97.6%. Furthermore, at certain concentrations, these drugs maintained the viability of human cells. Losartan and aliskiren have fungistatic and fungicidal action against <i>C. albicans</i> biofilms and are compatible with human cells. Therefore, these antihypertensive drugs can be repurposed to interfere with the metabolism and development of <i>Candida</i> biofilms, which are widely associated with clinical forms of candidosis, including oral localized forms such as denture stomatitis.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 4","pages":"157-165"},"PeriodicalIF":1.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10024903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doxorubicin Conjugates: An Efficient Approach for Enhanced Therapeutic Efficacy with Reduced Side Effects. 多柔比星共轭物:提高疗效、减少副作用的有效方法。
IF 1.8 4区 医学
Assay and drug development technologies Pub Date : 2023-05-01 Epub Date: 2023-04-20 DOI: 10.1089/adt.2022.102
Pallavi Sandal, Lakshmi Kumari, Preeti Patel, Amrinder Singh, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi
{"title":"Doxorubicin Conjugates: An Efficient Approach for Enhanced Therapeutic Efficacy with Reduced Side Effects.","authors":"Pallavi Sandal, Lakshmi Kumari, Preeti Patel, Amrinder Singh, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.1089/adt.2022.102","DOIUrl":"10.1089/adt.2022.102","url":null,"abstract":"<p><p>Continuous drug delivery modification is the scientific approach and is a basic need for the efficient therapeutic efficacy of active drug molecules. Polymer-drug conjugates have long been a hallmark of the drug delivery sector, with various conjugates on the market or in clinical trials. Improved drug solubilization, extended blood circulation, decreased immunogenicity, controlled release behavior, and increased safety are the advantages of conjugating drugs to the polymeric carrier like polyethylene glycol (PEG). Polymer therapies have evolved over the last decade, resulting in polymer-drug conjugates with diverse topologies and chemical properties. Traditional nondegradable polymeric carriers like PEG and hydroxy propyl methacrylate have been clinically employed to fabricate polymer-drug conjugates. Still, functionalized polymer-drug conjugates are increasingly being used to increase localized drug delivery and ease of removal. Researchers have developed multifunctional carriers that can \"see and treat\" patients using medicinal and diagnostic chemicals. This review focused on the various conjugation approaches for attaching the doxorubicin to different polymers to achieve enhanced therapeutic efficacy, that is, increased bioavailability and reduced adverse effects.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 4","pages":"137-156"},"PeriodicalIF":1.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10022334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信