Asian Journal of Pharmaceutical Sciences最新文献

筛选
英文 中文
Revamping anti-cGAS-STING therapy via an injectable thermo-responsive supramolecular hydrogel for pathological retinal angiogenesis 通过一种可注射的热响应超分子水凝胶改造抗 GAS-STING 疗法,用于病理性视网膜血管生成
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100969
Dan Yan , Yuqian Wang , Weijie Ouyang , Caihong Huang , Qian Chen , Jiaoyue Hu , Zuguo Liu
{"title":"Revamping anti-cGAS-STING therapy via an injectable thermo-responsive supramolecular hydrogel for pathological retinal angiogenesis","authors":"Dan Yan ,&nbsp;Yuqian Wang ,&nbsp;Weijie Ouyang ,&nbsp;Caihong Huang ,&nbsp;Qian Chen ,&nbsp;Jiaoyue Hu ,&nbsp;Zuguo Liu","doi":"10.1016/j.ajps.2024.100969","DOIUrl":"10.1016/j.ajps.2024.100969","url":null,"abstract":"<div><div>Retinal neovascularization is a leading cause of blindness. While current anti-VEGF drugs effectively inhibit pathological angiogenesis, some patients develop resistance or reduced responsiveness to treatments over time, leading to diminished effectiveness. In this study, we identified high activation of the cGAS-STING signaling pathway, which exacerbated pathological neovascularization and vessel leakage. We developed an injectable thermo-responsive supramolecular hydrogel loaded with an anti-STING drug. The hydrogel, made of Pluronic F127 (PF·127) consisting of poly(ethylene oxide) and poly(propylene oxide) units, demonstrated excellent transparency and biocompatibility. Importantly, the thermo-sensitive property allowed for precise spatial release of the drug, extending the effective treatment duration of C-176, which suppressed STING activation in the retina, reduced inflammation, and protected retinal tissue. Hydro<sup>C-176</sup> effectively inhibited microglial cell infiltration and the release of inflammatory angiogenic factors, highlighting its enhanced efficacy. While demonstrating slightly lower effectiveness compared to traditional anti-VEGF therapy, Hydro<sup>C-176</sup> exhibited more robust capabilities in regulating ocular microenvironmental inflammation. This approach may assist in enhancing the sensitivity and effectiveness of anti-VEGF therapy for reducing ocular inflammation, potentially improving patients’ response to traditional treatment. These results have suggested innovative and comprehensive strategies for the management of retinal neovascularization.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100969"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intravitreal long-term sustained ranibizumab delivery using injectable microgel-embedded hydrogel 使用可注射微凝胶嵌入水凝胶在玻璃体内长期持续输送雷尼珠单抗
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100947
Simin Lee , Jun Young Park , Hye Kyoung Hong , Joo Young Son , Byungwook Kim , Jae Yong Chung , Se Joon Woo , Ki Dong Park
{"title":"Intravitreal long-term sustained ranibizumab delivery using injectable microgel-embedded hydrogel","authors":"Simin Lee ,&nbsp;Jun Young Park ,&nbsp;Hye Kyoung Hong ,&nbsp;Joo Young Son ,&nbsp;Byungwook Kim ,&nbsp;Jae Yong Chung ,&nbsp;Se Joon Woo ,&nbsp;Ki Dong Park","doi":"10.1016/j.ajps.2024.100947","DOIUrl":"10.1016/j.ajps.2024.100947","url":null,"abstract":"<div><div>Retinal vascular disease is the leading cause of visual impairment. Although intravitreal drug injections are the most suitable approach for addressing retinal disorders, existing clinical treatments necessitate repeated administration, imposing a substantial burden on patients with various intraocular complications. This study introduces an injectable and biodegradable hyaluronan microgel (Hm)-embedded gelatin–poly(ethylene glycol)–tyramine hydrogel (HmGh) designed for sustained intravitreal ranibizumab (RBZ) delivery to reduce patient burden and minimize the side effects associated with frequent injections. Hm exhibited a controlled RBZ loading capacity and release profile. HmGh effectively controlled the initial burst release and overall release profile. Cytocompatibility and cellular drug efficacy were also demonstrated. In an animal study, HmGh maintained RBZ concentrations in the vitreous and retina for &gt;120 d. Pharmacokinetic studies showed that the half-life of RBZ-loaded HmGh in the vitreous and retina was 2.55 and 2.05 times longer than that of RBZ-loaded Hm, respectively, and 9.58 and 38.46 times longer than that of RBZ solution, respectively. Importantly, the initial RBZ elimination from HmGh to the aqueous humor was significantly reduced compared to that from the Hm and RBZ solutions. Intraocular degradation and safety were comprehensively evaluated using fundus imaging and histological analyses. In conclusion, this injectable microgel-embedded hydrogel formulation is a promising prolonged drug delivery system for treating various posterior segment eye diseases.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100947"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration 用于骨再生的细胞外囊泡功能化生物活性支架
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100945
Taozhao Yu , Irene Shuping Zhao , Hongguang Pan , Jianhua Yang , Huanan Wang , Yongqiang Deng , Yang Zhang
{"title":"Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration","authors":"Taozhao Yu ,&nbsp;Irene Shuping Zhao ,&nbsp;Hongguang Pan ,&nbsp;Jianhua Yang ,&nbsp;Huanan Wang ,&nbsp;Yongqiang Deng ,&nbsp;Yang Zhang","doi":"10.1016/j.ajps.2024.100945","DOIUrl":"10.1016/j.ajps.2024.100945","url":null,"abstract":"<div><div>The clinical need for effective bone regeneration in compromised conditions continues to drive demand for innovative solutions. Among emerging strategies, extracellular vesicles (EVs) have shown promise as an acellular approach for bone regeneration. However, their efficacy is hindered by rapid sequestration and clearance when administered via bolus injection. To address this challenge, EV-functionalized scaffolds have recently been proposed as an alternative delivery strategy to enhance EV retention and subsequent healing efficacy. This review aims to consolidate recent advancements in the development of EV-functionalized scaffolds for augmenting bone regeneration. It explores various sources of EVs and different strategies for integrating them into biomaterials. Furthermore, the mechanisms underlying their therapeutic effects in bone regeneration are elucidated. Current limitations in clinical translation and perspectives on the design of more efficient EVs for improved therapeutic efficacy are also presented. Overall, this review can provide inspiration for the development of novel EV-assisted grafts with superior bone regeneration potential.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100945"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell membrane-coated mRNA nanoparticles for enhanced delivery to dendritic cells and immunotherapy 细胞膜包覆的 mRNA 纳米颗粒,用于增强树突状细胞的输送和免疫疗法
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-09-24 DOI: 10.1016/j.ajps.2024.100968
Qiaoyun Li , Junho Byun , Dongyoon Kim, Yina Wu, Jaiwoo Lee, Yu-Kyoung Oh
{"title":"Cell membrane-coated mRNA nanoparticles for enhanced delivery to dendritic cells and immunotherapy","authors":"Qiaoyun Li ,&nbsp;Junho Byun ,&nbsp;Dongyoon Kim,&nbsp;Yina Wu,&nbsp;Jaiwoo Lee,&nbsp;Yu-Kyoung Oh","doi":"10.1016/j.ajps.2024.100968","DOIUrl":"10.1016/j.ajps.2024.100968","url":null,"abstract":"<div><div>Cationic polymers such as polyethylenimine have been considered promising carriers for mRNA vaccines. However, their application is hindered by their inherent toxicity and a lack of targeted delivery capability. These issues need to be addressed to develop effective cancer vaccines. In this study, we investigated whether dendritic cell membrane-coated polyethylenimine/mRNA nanoparticles (DPN) could effectively deliver mRNA to dendritic cells and induce immune responses. For comparison, we employed red blood cell membrane-coated polyethylenimine/mRNA (RPN) and plain polyethylenimine/mRNA polyplex (PN). The dendritic cell membrane coating altered the zeta potential values and surface protein patterns of PN. DPN demonstrated significantly higher uptake in dendritic cells compared to PN and RPN, and it also showed greater mRNA expression within these cells. DPN, carrying mRNA encoding luciferase, enhanced green fluorescent protein, or ovalbumin (OVA), exhibited higher protein expression in dendritic cells than the other groups. Additionally, DPN exhibited favorable mRNA escape from lysosomes post-internalization into dendritic cells. In mice, subcutaneous administration of DPN containing ovalbumin mRNA (DPN<sub>OVA</sub>) elicited higher titers of anti-OVA IgG antibodies and a greater population of OVA-specific CD8<sup>+</sup> T cells than the other groups. In a B16F10-OVA tumor model, DPN<sub>OVA</sub> treatment resulted in the lowest tumor growth among the treated groups. Moreover, the population of OVA-specific CD8<sup>+</sup> T cells was the highest in the DPN<sub>OVA</sub>-treated group. While we demonstrated DPN's feasibility as an mRNA delivery system in a tumor model, the potential of DPN can be broadly extended for immunotherapeutic treatments of various diseases through mRNA delivery to antigen-presenting cells.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100968"},"PeriodicalIF":10.7,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkyl chain length-regulated in situ intelligent nano-assemblies with AIE-active photosensitizers for photodynamic cancer therapy 具有 AIE 活性光敏剂的烷基链长度调控原位智能纳米组合物,用于光动力癌症治疗
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-09-21 DOI: 10.1016/j.ajps.2024.100967
Lingyi Shen , Qi-Long Zhang , Yongchao Yao , Ya-Li Huang , Zhichang Zheng , Ming Li , Hong Xu , Lin Tan , Xukun Liao , Binyi Xia , Lin Li , Carl Redshaw , Yang Bai , Chengli Yang
{"title":"Alkyl chain length-regulated in situ intelligent nano-assemblies with AIE-active photosensitizers for photodynamic cancer therapy","authors":"Lingyi Shen ,&nbsp;Qi-Long Zhang ,&nbsp;Yongchao Yao ,&nbsp;Ya-Li Huang ,&nbsp;Zhichang Zheng ,&nbsp;Ming Li ,&nbsp;Hong Xu ,&nbsp;Lin Tan ,&nbsp;Xukun Liao ,&nbsp;Binyi Xia ,&nbsp;Lin Li ,&nbsp;Carl Redshaw ,&nbsp;Yang Bai ,&nbsp;Chengli Yang","doi":"10.1016/j.ajps.2024.100967","DOIUrl":"10.1016/j.ajps.2024.100967","url":null,"abstract":"<div><div>Photodynamic therapy (PDT) brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing; however, the low bioavailability of traditional photosensitizers (PSs) and their dependence on oxygen severely limits their application. Aggregation-induced emission (AIE) PSs can dramatically facilitate the photosensitization effect, which can have positive impacts on tumor PDT. To-date, most AIE PSs lack tumor targeting capability and possess poor cell delivery, resulting in their use in large quantities that are harmful to healthy tissues. In this study, a series of AIE PSs based on pyridinium-substituted triphenylamine salts ( TTPAs <strong>1</strong>–<strong>6</strong>) with different alkyl chain lengths are synthesized. Results reveal that TTPAs <strong>1</strong>–<strong>6</strong> promote the generation of type I and II ROS, including ·OH and <sup>1</sup>O<sub>2</sub>. In particular, the membrane permeability and targeting of TTPAs <strong>4</strong>-<strong>6</strong> bearing C8-C10 side-chains are higher than TTPAs <strong>1</strong>-<strong>3</strong> bearing shorter alkyl chains. Additionally, they can assemble with albumin, thereby forming nanoparticles (TTPA <strong>4</strong>–<strong>6</strong> NPs) <em>in situ</em> in blood, which significantly facilitates mitochondrial-targeting and strong ROS generation ability. Moreover, the TTPA <strong>4</strong>–<strong>6</strong> NPs are pH-responsive, allowing for increased accumulation or endocytosis of the tumor and enhancing the imaging or therapeutic effect. Therefore, the <em>in vivo</em> distributions of TTPA <strong>4</strong>–<strong>6</strong> NPs are visually enriched in tumor sites and exhibited excellent PDT efficacy. This work demonstrates a novel strategy for AIE PDT and has the potential to play an essential role in clinical applications using nano-delivery systems.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100967"},"PeriodicalIF":10.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure based release kinetics analysis of doxazosin mesylate sustained-release tablets using micro-computed tomography 利用微计算机断层扫描技术对甲磺酸多沙唑嗪缓释片进行基于结构的释放动力学分析
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-09-21 DOI: 10.1016/j.ajps.2024.100966
Qian Liu , Mengqing Zan , Hanhan Huang , Hai Su , Wenjing Zhang , Lingyun Ma , Guangchao Zhang , Zunjian Zhang , Jiwen Zhang , Jianzhao Niu , Mingdi Xu
{"title":"Structure based release kinetics analysis of doxazosin mesylate sustained-release tablets using micro-computed tomography","authors":"Qian Liu ,&nbsp;Mengqing Zan ,&nbsp;Hanhan Huang ,&nbsp;Hai Su ,&nbsp;Wenjing Zhang ,&nbsp;Lingyun Ma ,&nbsp;Guangchao Zhang ,&nbsp;Zunjian Zhang ,&nbsp;Jiwen Zhang ,&nbsp;Jianzhao Niu ,&nbsp;Mingdi Xu","doi":"10.1016/j.ajps.2024.100966","DOIUrl":"10.1016/j.ajps.2024.100966","url":null,"abstract":"<div><div>The structures of solid dosage forms determine their release behaviors and are critical attributes for the design and evaluation of the solid dosage forms. Here, the 3D structures of doxazosin mesylate sustained-release tablets were parallelly assessed by micro-computed tomography (micro-CT). There were no significant differences observed in the release profiles between the RLD and the generic formulation in the conventional dissolution, but the generic preparation released slightly faster in media with ethanol during an alcohol-induced dose-dumping test. With their 3D structures obtained via micro-CT determination, the unique release behaviors of both RLD and the generic were investigated to reveal the effects of internal fine structure on the release kinetics. The structural parameters for both preparations were similar in conventional dissolution test, while the dissolutions in ethanol media showed some distinctions between RLD and generic preparations due to their static and dynamic structures. Furthermore, the findings revealed that the presence of ethanol accelerated dissolution and induced changes in internal structure of both RLD and generic preparations. Moreover, structure parameters like volume and area of outer contour, remaining solid volume and cavity volume were not equivalent between the two formulations in 40 % ethanol. In conclusion, the structure data obtained from this study provided valuable insights into the diverse release behaviors observed in various modified-release formulations in drug development and quality control.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100966"},"PeriodicalIF":10.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury 在缺血再灌注损伤中输送治疗药物的细胞外囊泡
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-09-04 DOI: 10.1016/j.ajps.2024.100965
Weihang Zhou , Xinchi Jiang , Jianqing Gao
{"title":"Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury","authors":"Weihang Zhou ,&nbsp;Xinchi Jiang ,&nbsp;Jianqing Gao","doi":"10.1016/j.ajps.2024.100965","DOIUrl":"10.1016/j.ajps.2024.100965","url":null,"abstract":"<div><div>Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs <em>via</em> surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100965"},"PeriodicalIF":10.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into microscopic fabrication, macroscopic forms and biomedical applications of alginate composite gel containing metal-organic frameworks 对含有金属有机框架的海藻酸盐复合凝胶的微观制造、宏观形态和生物医学应用的深入了解
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-09-01 DOI: 10.1016/j.ajps.2024.100952
Yuanke Zhang , Lvyao Yang , Min Zhou , Yanhua Mou , Dongmei Wang , Peng Zhang
{"title":"Insights into microscopic fabrication, macroscopic forms and biomedical applications of alginate composite gel containing metal-organic frameworks","authors":"Yuanke Zhang ,&nbsp;Lvyao Yang ,&nbsp;Min Zhou ,&nbsp;Yanhua Mou ,&nbsp;Dongmei Wang ,&nbsp;Peng Zhang","doi":"10.1016/j.ajps.2024.100952","DOIUrl":"10.1016/j.ajps.2024.100952","url":null,"abstract":"<div><div>Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework (MOF), alginate/MOF composite gel has captured the interest of many researchers as a tunable platform with high stability, controllable pore structure, and enhanced biological activity. Interestingly, different from the traditional organic or inorganic nanofillers physically trapped or chemically linked within neTtworks, MOFs crystals can not only be dispersed by crosslinking polymerization, but also support self-assembly in-situ under the help of chelating cations with alginate. The latter is influenced by multiple factors and may involve some complex mechanisms of action, which is also a topic discussed deeply in this article while summarizing different preparation routes. Furthermore, various physical and chemical levels of improvement strategies and available macroforms are summarized oriented towards obtaining composite gel with ideal performance. Finally, the application status of this composite system in drug delivery, wound healing and other biomedical fields is further discussed. And the current limitations and future development directions are shed light simultaneously, which may provide guidance for the vigorous development of these composite systems.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100952"},"PeriodicalIF":10.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving treatment for Parkinson's disease: Harnessing photothermal and phagocytosis-driven delivery of levodopa nanocarriers across the blood-brain barrier 改善帕金森病的治疗:利用光热和吞噬作用驱动左旋多巴纳米载体穿越血脑屏障
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-08-30 DOI: 10.1016/j.ajps.2024.100963
Kaili Liang, Li Yang, Jiawei Kang, Bo Liu, Ding Zhang, Liyan Wang, Wei Wang, Qing Wang
{"title":"Improving treatment for Parkinson's disease: Harnessing photothermal and phagocytosis-driven delivery of levodopa nanocarriers across the blood-brain barrier","authors":"Kaili Liang,&nbsp;Li Yang,&nbsp;Jiawei Kang,&nbsp;Bo Liu,&nbsp;Ding Zhang,&nbsp;Liyan Wang,&nbsp;Wei Wang,&nbsp;Qing Wang","doi":"10.1016/j.ajps.2024.100963","DOIUrl":"10.1016/j.ajps.2024.100963","url":null,"abstract":"<div><div>Parkinson's disease (PD) poses a significant therapeutic challenge, mainly due to the limited ability of drugs to cross the blood-brain barrier (BBB) without undergoing metabolic transformations. Levodopa, a key component of dopamine replacement therapy, effectively enhances dopaminergic activity. However, it encounters obstacles from peripheral decarboxylase, hindering its passage through the BBB. Furthermore, levodopa metabolism generates reactive oxygen species (ROS), exacerbating neuronal damage. Systemic pulsatile dosing further disrupts natural physiological buffering mechanisms. In this investigation, we devised a ROS-responsive levodopa prodrug system capable of releasing the drug and reducing ROS levels in the central nervous system. The prodrug was incorporated within second near-infrared region (NIR-II) gold nanorods (AuNRs) and utilized angiopep-2 (ANG) for targeted delivery across the BBB. The processes of tight junction opening and endocytosis facilitated improved levodopa transport. ROS scavenging helped alleviate neuronal oxidative stress, leading to enhanced behavioral outcomes and reduced oxidative stress levels in a mouse model of PD. Following treatment, the PD mouse model exhibited enhanced flexibility, balance, and spontaneous exploratory activity. This approach successfully alleviated the motor impairments associated with the disease model. Consequently, our strategy, utilizing NIR-II AuNRs and ANG-mediated BBB penetration, coupled with the responsive release of levodopa, offers a promising approach for dopamine supplementation and microenvironmental regulation. This system holds substantial potential as an efficient platform for delivering neuroprotective drugs and advancing PD therapy.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100963"},"PeriodicalIF":10.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy 一种由天然化合物赋能的荚叶毒素原药纳米组合可放大癌症化疗的疗效和毒性优势
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-08-01 DOI: 10.1016/j.ajps.2024.100892
{"title":"A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy","authors":"","doi":"10.1016/j.ajps.2024.100892","DOIUrl":"10.1016/j.ajps.2024.100892","url":null,"abstract":"<div><p>Small-molecule prodrug nanoassembly technology with a unique advantage in off-target toxicity reduction has been widely used for antitumor drug delivery. However, prodrug activation remains a rate-limiting step for exerting therapeutic actions, which requires to quickly reach the minimum valid concentrations of free drugs. Fortunately, we find that a natural compound (BL-193) selectively improves the chemotherapy sensitivity of breast cancer cells to podophyllotoxin (PPT) at ineffective dose concentrations. Based on this, we propose to combine prodrug nanoassembly with chemotherapy sensitization to fully unleash the chemotherapeutic potential of PPT. Specifically, a redox-sensitive prodrug (PSSF) of PPT is synthesized by coupling 9-fluorenyl-methanol (Fmoc-OH) with PPT linked via disulfide bond. Intriguingly, PSSF with a π-conjugated structure readily co-assembles with BL-193 into stable nanoassembly. Significantly, BL-193 serves as an excellent chemosensitizer that creates an ultra-low-dose chemotherapeutic window for PPT. Moreover, prodrug design and precise hybrid nanoassembly well manage off-target toxicity. As expected, such a BL-193-empowered prodrug nanoassembly elicits potent antitumor responses. This study offers a novel paradigm to magnify chemotherapy efficacy-toxicity benefits.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 4","pages":"Article 100892"},"PeriodicalIF":10.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1818087624000096/pdfft?md5=7511bc92f1d69866729349b4f73ae5d9&pid=1-s2.0-S1818087624000096-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信