Asian Journal of Pharmaceutical Sciences最新文献

筛选
英文 中文
CaCO3-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage 环绕 CaCO3 的中空 CuS 纳米颗粒通过增强钙超载触发的线粒体损伤抑制宫颈癌
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-11-02 DOI: 10.1016/j.ajps.2024.100989
Pengfei Wang , Xichen Sun , Liuyan Tang , Ningning Li , Qing Wang , Bicheng Gan , Yuezhou Zhang
{"title":"CaCO3-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage","authors":"Pengfei Wang ,&nbsp;Xichen Sun ,&nbsp;Liuyan Tang ,&nbsp;Ningning Li ,&nbsp;Qing Wang ,&nbsp;Bicheng Gan ,&nbsp;Yuezhou Zhang","doi":"10.1016/j.ajps.2024.100989","DOIUrl":"10.1016/j.ajps.2024.100989","url":null,"abstract":"<div><div>Cervical cancer stands is a formidable malignancy that poses a significant threat to women's health. Calcium overload, a minimally invasive tumor treatment, aims to accumulate an excessive concentration of Ca<sup>2+</sup> within mitochondria, triggering apoptosis. Copper sulfide (CuS) represents a photothermal mediator for tumor hyperthermia. However, relying solely on thermotherapy often proves insufficient in controlling tumor growth. Curcumin (CUR), an herbal compound with anti-cancer properties, inhibits the efflux of exogenous Ca<sup>2+</sup> while promoting its excretion from the endoplasmic reticulum into the cytoplasm. To harness these therapeutic modalities, we have developed a nanoplatform that incorporates hollow CuS nanoparticles (NPs) adorned with multiple CaCO<sub>3</sub> particles and internally loaded with CUR. This nanocomposite exhibits high uptake and easy escape from lysosomes, along with the degradation of surrounding CaCO<sub>3</sub>, provoking the generation of abundant exogenous Ca<sup>2+</sup> <em>in situ</em>, ultimately damaging the mitochondria of diseased cells. Impressively, under laser excitation, the CuS NPs demonstrate a photothermal effect that accelerates the degradation of CaCO<sub>3</sub>, synergistically enhancing the antitumor effect through photothermal therapy. Additionally, fluorescence imaging reveals the distribution of these nanovehicles <em>in vivo</em>, indicating their effective accumulation at the tumor site. This nanoplatform shows promising outcomes for tumor-targeting and the effective treatment in a murine model of cervical cancer, achieved through cascade enhancement of calcium overload-based dual therapy.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100989"},"PeriodicalIF":10.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors 推动小分子酪氨酸激酶抑制剂纳米制剂发展的生物制药和药代动力学特性
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-26 DOI: 10.1016/j.ajps.2024.100980
Soumyadip Mukherjee , Vedant Joshi , Kolimi Prashanth Reddy, Nidhi Singh, Priyanka Das, Pallab Datta
{"title":"Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors","authors":"Soumyadip Mukherjee ,&nbsp;Vedant Joshi ,&nbsp;Kolimi Prashanth Reddy,&nbsp;Nidhi Singh,&nbsp;Priyanka Das,&nbsp;Pallab Datta","doi":"10.1016/j.ajps.2024.100980","DOIUrl":"10.1016/j.ajps.2024.100980","url":null,"abstract":"<div><div>Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T<sub>1/2</sub>, solubility, pK<sub>a</sub>, therapeutic index, IC<sub>50</sub>, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100980"},"PeriodicalIF":10.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new nano approach to prevent tumor growth in the local treatment of glioblastoma: Temozolomide and rutin-loaded hybrid layered composite nanofiber 在胶质母细胞瘤局部治疗中防止肿瘤生长的纳米新方法:替莫唑胺和芦丁负载的混合层状复合纳米纤维
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-23 DOI: 10.1016/j.ajps.2024.100971
Melis Ercelik , Cagla Tekin , Melisa Gurbuz , Yagmur Tuncbilekli , Hazal Yılmaz Dogan , Busra Mutlu , Pınar Eser , Gulcin Tezcan , Fatma Nur Parın , Kenan Yildirim , Mehmet Sarihan , Gurler Akpinar , Murat Kasap , Ahmet Bekar , Hasan Kocaeli , Mevlut Ozgur Taskapilioglu , Secil Ak Aksoy , Rıfat Ozpar , Bahattin Hakyemez , Berrin Tunca
{"title":"A new nano approach to prevent tumor growth in the local treatment of glioblastoma: Temozolomide and rutin-loaded hybrid layered composite nanofiber","authors":"Melis Ercelik ,&nbsp;Cagla Tekin ,&nbsp;Melisa Gurbuz ,&nbsp;Yagmur Tuncbilekli ,&nbsp;Hazal Yılmaz Dogan ,&nbsp;Busra Mutlu ,&nbsp;Pınar Eser ,&nbsp;Gulcin Tezcan ,&nbsp;Fatma Nur Parın ,&nbsp;Kenan Yildirim ,&nbsp;Mehmet Sarihan ,&nbsp;Gurler Akpinar ,&nbsp;Murat Kasap ,&nbsp;Ahmet Bekar ,&nbsp;Hasan Kocaeli ,&nbsp;Mevlut Ozgur Taskapilioglu ,&nbsp;Secil Ak Aksoy ,&nbsp;Rıfat Ozpar ,&nbsp;Bahattin Hakyemez ,&nbsp;Berrin Tunca","doi":"10.1016/j.ajps.2024.100971","DOIUrl":"10.1016/j.ajps.2024.100971","url":null,"abstract":"<div><div>Total resection of glioblastoma (GB) tumors is nearly impossible, and systemic administration of temozolomide (TMZ) is often inadequate. This study presents a hybrid layered composite nanofiber mesh (LHN) designed for localized treatment in GB tumor bed. The LHN, consisting of polyvinyl alcohol and core-shell polylactic acid layers, was loaded with TMZ and rutin. <em>In vitro</em> analysis revealed that LHN<sup>TMZ</sup> and LHN<sup>rutin</sup> decelerated epithelial-mesenchymal transition and growth of stem-like cells, while the combination, LHN<sup>TMZ</sup><sup>+rutin</sup>, significantly reduced sphere size compared to untreated and LHN<sup>TMZ</sup>-treated cells (<em>P</em> &lt; 0.0001). In an orthotopic C6-induced GB rat model, LHN<sup>TMZ</sup><sup>+rutin</sup> therapy demonstrated a more pronounced tumor-reducing effect than LHN<sup>TMZ</sup> alone. Tumor volume, assessed by magnetic resonance imaging, was significantly reduced in LHN<sup>TMZ</sup><sup>+rutin</sup>-treated rats compared to untreated controls. Structural changes in tumor mitochondria, reduced membrane potential, and decreased PARP expression indicated the activation of apoptotic pathways in tumor cells, which was further confirmed by a reduction in PHH3, indicating decreased mitotic activity of tumor cells. Additionally, the local application of LHNs in the GB model mitigated aggressive tumor features without causing local tissue inflammation or adverse systemic effects. This was evidenced by a decrease in the angiogenesis marker CD31, the absence of inflammation or necrosis in H&amp;E staining of the cerebellum, increased production of IFN-γ, decreased levels of interleukin-4 in splenic T cells, and lower serum AST levels. Our findings collectively indicate that LHN<sup>TMZ</sup><sup>+rutin</sup> is a promising biocompatible model for the local treatment of GB.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 6","pages":"Article 100971"},"PeriodicalIF":10.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrostatic spraying for fine-tuning particle dimensions to enhance oral bioavailability of poorly water-soluble drugs 静电喷雾微调颗粒尺寸,提高水溶性差药物的口服生物利用度
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100953
Jung Suk Kim , Seunghyun Cheon , Mi Ran Woo , Sanghyun Woo , Jee-Eun Chung , Yu Seok Youn , Kyung Taek Oh , Soo-Jeong Lim , Sae Kwang Ku , Bao Loc Nguyen , Jong Oh Kim , Sung Giu Jin , Han-Gon Choi
{"title":"Electrostatic spraying for fine-tuning particle dimensions to enhance oral bioavailability of poorly water-soluble drugs","authors":"Jung Suk Kim ,&nbsp;Seunghyun Cheon ,&nbsp;Mi Ran Woo ,&nbsp;Sanghyun Woo ,&nbsp;Jee-Eun Chung ,&nbsp;Yu Seok Youn ,&nbsp;Kyung Taek Oh ,&nbsp;Soo-Jeong Lim ,&nbsp;Sae Kwang Ku ,&nbsp;Bao Loc Nguyen ,&nbsp;Jong Oh Kim ,&nbsp;Sung Giu Jin ,&nbsp;Han-Gon Choi","doi":"10.1016/j.ajps.2024.100953","DOIUrl":"10.1016/j.ajps.2024.100953","url":null,"abstract":"<div><div>While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs, the outcomes often exhibit suboptimal particle size distribution and large particle sizes, limiting their effectiveness. In this study, we introduce electrostatic spraying as an advanced technology tailored for poorly water-soluble drugs, enabling the fabrication of nanoparticles with fine and uniform particle size distribution. Regorafenib (1 g), as a model drug, copovidone (5 g), and sodium dodecyl sulfate (0.1 g) were dissolved in 200 ml ethanol and subjected to conventional-spray-dryer and electrostatic spray dryer. The electrostatic spray-dried nanoparticles (ESDN) showed smaller particle sizes with better uniformity compared to conventional spray-dried nanoparticles (CSDN). ESDN demonstrated significantly enhanced solubility and rapid release in water. <em>In vitro</em> studies revealed that ESDN induced apoptosis in HCT-116 cells to a greater extent, exhibiting superior cytotoxicity compared to CSDN. Furthermore, ESDN substantially improved oral bioavailability and antitumor efficacy compared to CSDN. These findings suggest that ESD shows potential in developing enhanced drug delivery systems for poorly water-soluble drugs, effectively addressing the limitations associated with CSD methods.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100953"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil-targeted liposomal platform: A shift in novel approach for early detection and treatment of cancer metastasis 中性粒细胞靶向脂质体平台:癌症转移早期检测和治疗新方法的转变
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100949
Cong Li , Kexin Zhang , Zehua Cheng , Lihong Wang , Zehao Li , Chao Shen , Zhihang Li , Zeyu Wang , Lianrui Cao , Lijiang Chen
{"title":"Neutrophil-targeted liposomal platform: A shift in novel approach for early detection and treatment of cancer metastasis","authors":"Cong Li ,&nbsp;Kexin Zhang ,&nbsp;Zehua Cheng ,&nbsp;Lihong Wang ,&nbsp;Zehao Li ,&nbsp;Chao Shen ,&nbsp;Zhihang Li ,&nbsp;Zeyu Wang ,&nbsp;Lianrui Cao ,&nbsp;Lijiang Chen","doi":"10.1016/j.ajps.2024.100949","DOIUrl":"10.1016/j.ajps.2024.100949","url":null,"abstract":"<div><div>Tumor metastasis is responsible for 90 % of cancer-associated deaths, and its early detection may decrease the likelihood of mortality. Studies have demonstrated that metastasis results from the interaction between “seeds” (tumor cells) and “soil” (pre-metastatic niche, PMN). As the first and most abundant immune cells to be recruited to PMN, neutrophils play a key role in the ultimate formation of metastatic foci through mechanisms such as supporting tumor cell growth, promoting angiogenesis, and shaping an immune-suppressive microenvironment. In this study, two distinct types of sialic acid (SA)-modified liposomes were prepared to target and regulate pro-metastatic neutrophils through the <em>l</em>-selectin receptor. One of these liposomes, named ICG@SAL, was used to encapsulate indocyanine green (ICG) and was specifically designed for the early detection of cancer metastasis. The other liposome, referred to as ABE/Cur@SAL, co-loaded abemaciclib (ABE) and curcumin (Cur), with the intention of suppressing the progression of metastatic tumor. Fluorescence imaging results from the mouse spontaneous metastasis model indicated that ICG@SAL demonstrated faster targeting and stronger accumulation in the metastatic organs than unmodified ICG liposomes (ICG@CL). This suggested that ICG@SAL could detect tumor metastasis at an early stage. The therapy with co-loaded liposomes in the mouse experimental lung metastasis model indicated that ABE/Cur@SAL could inhibit regulatory T (Treg) cell proliferation, enhance effector T cell activity and reduce tumorigenic factor release, implying that ABE/Cur@SAL could inhibit tumor metastasis. Overall, our work provided a sensitive and convenient approach to early diagnosis and treatment of tumor metastasis. ICG@SAL could be employed for the early detection of tumor metastasis, while ABE/Cur@SAL could be used to inhibit the development of tumor metastasis when early metastasis was identified.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100949"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in spatio-temporally controllable systems for management of glioma 用于治疗胶质瘤的时空可控系统的最新进展
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100954
Huiwen Zhang , Wanqi Zhu , Wei Pan , Xiuyan Wan , Na Li , Bo Tang
{"title":"Recent advances in spatio-temporally controllable systems for management of glioma","authors":"Huiwen Zhang ,&nbsp;Wanqi Zhu ,&nbsp;Wei Pan ,&nbsp;Xiuyan Wan ,&nbsp;Na Li ,&nbsp;Bo Tang","doi":"10.1016/j.ajps.2024.100954","DOIUrl":"10.1016/j.ajps.2024.100954","url":null,"abstract":"<div><div>Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100954"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-organic frameworks in oral drug delivery 口服给药中的金属有机框架
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100951
Aun Raza , Wei Wu
{"title":"Metal-organic frameworks in oral drug delivery","authors":"Aun Raza ,&nbsp;Wei Wu","doi":"10.1016/j.ajps.2024.100951","DOIUrl":"10.1016/j.ajps.2024.100951","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional oral drug delivery systems through their unique combination of metal ions and organic ligands. This review systematically examines the structural properties and principles of MOFs, setting the stage for their application in drug delivery. It discusses various classes of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and controlled release mechanisms. The effectiveness of MOFs is illustrated through case studies that highlight their capabilities in enhancing drug solubility, providing protection against the harsh gastrointestinal environment, and enabling precise drug release. The review addresses potential challenges, particularly the toxicity concerns associated with MOFs, and calls for further research into their biocompatibility and interactions with biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing oral drug delivery, highlighting the critical need for comprehensive research to harness their full potential in clinical applications.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100951"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye 基于非氰基染料构建的 P-IR890 纳米光敏剂的深层近红外光激发稳定协同光动力和光热疗法
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100955
Dawei Jiang , Chao Chen , Peng Dai , Caiyan Li , Zhiyi Feng , Na Dong , Fenzan Wu , Junpeng Xu , Ping Wu , Liuxi Chu , Shengcun Li , Xiaokun Li , Youjun Yang , Weian Zhang , Zhouguang Wang
{"title":"Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye","authors":"Dawei Jiang ,&nbsp;Chao Chen ,&nbsp;Peng Dai ,&nbsp;Caiyan Li ,&nbsp;Zhiyi Feng ,&nbsp;Na Dong ,&nbsp;Fenzan Wu ,&nbsp;Junpeng Xu ,&nbsp;Ping Wu ,&nbsp;Liuxi Chu ,&nbsp;Shengcun Li ,&nbsp;Xiaokun Li ,&nbsp;Youjun Yang ,&nbsp;Weian Zhang ,&nbsp;Zhouguang Wang","doi":"10.1016/j.ajps.2024.100955","DOIUrl":"10.1016/j.ajps.2024.100955","url":null,"abstract":"<div><div>The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) under the stimulation of near-infrared (NIR) light (commonly 808 nm). Unfortunately, the stability of NIR-excited cyanine dyes is not satisfactory. These cyanine dyes can be attacked by self-generated reactive oxygen species (ROS) during PDT processes, resulting in structural damage and rapid degradation, which is fatal for phototherapy. To address this issue, a novel non-cyanine dye (IR890) was elaborately designed and synthesized by our team. The maximum absorption wavelength of IR890 was located in the deep NIR region (<em>ca.</em> 890 nm), which was beneficial for further improving tissue penetration depth. Importantly, IR890 exhibited good stability when continuously illuminated by deep NIR light. To improve the hydrophilicity and biocompatibility, the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer (POEGMA-b-PGMA-g-C<img>CH) <em>via</em> click chemistry. Then, the synthesized POEGMA-<em>b</em>-PGMA-<em>g</em>-IR890 amphiphilic polymer was utilized to prepare P-IR890 nano-photosensitizer <em>via</em> self-assembly method. Under irradiation with deep NIR light (850 nm, 0.5 W/cm<sup>2</sup>, 10 min), the dye degradation rate of P-IR890 was less than 5%. However, IR780 was almost completely degraded with the same light output power density and irradiation duration. In addition, P-IR890 could stably generate a large number of ROS and heat at the same time. It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer <em>via</em> irradiation with deep NIR light. P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway. Therefore, the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100955"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in copper homeostasis-involved tumor theranostics 铜平衡相关肿瘤治疗学的最新进展
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100948
Xinghua Ren , Xinyi Luo , Fuchang Wang , Long Wan , Xiaofan Wang , Jinya Xiong , Mengwei Ye , Shiqiao Rui , Zhu Liu , Siling Wang , Qinfu Zhao
{"title":"Recent advances in copper homeostasis-involved tumor theranostics","authors":"Xinghua Ren ,&nbsp;Xinyi Luo ,&nbsp;Fuchang Wang ,&nbsp;Long Wan ,&nbsp;Xiaofan Wang ,&nbsp;Jinya Xiong ,&nbsp;Mengwei Ye ,&nbsp;Shiqiao Rui ,&nbsp;Zhu Liu ,&nbsp;Siling Wang ,&nbsp;Qinfu Zhao","doi":"10.1016/j.ajps.2024.100948","DOIUrl":"10.1016/j.ajps.2024.100948","url":null,"abstract":"<div><div>As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu<sup>2+</sup>/Cu<sup>+</sup> is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100948"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems 羟乙基淀粉共聚物纳米粒子通过抑制抗氧化系统促进光动力疗法和抗肿瘤免疫力
IF 10.7 1区 医学
Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.ajps.2024.100950
Xiang Chen , Zhengtao Yong , Yuxuan Xiong , Hai Yang , Chen Xu , Xing Wang , Qingyuan Deng , Jiayuan Li , Xiangliang Yang , Zifu Li
{"title":"Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems","authors":"Xiang Chen ,&nbsp;Zhengtao Yong ,&nbsp;Yuxuan Xiong ,&nbsp;Hai Yang ,&nbsp;Chen Xu ,&nbsp;Xing Wang ,&nbsp;Qingyuan Deng ,&nbsp;Jiayuan Li ,&nbsp;Xiangliang Yang ,&nbsp;Zifu Li","doi":"10.1016/j.ajps.2024.100950","DOIUrl":"10.1016/j.ajps.2024.100950","url":null,"abstract":"<div><div>Photodynamic therapy (PDT) can produce high levels of reactive oxygen species (ROS) to kill tumor cells and induce antitumor immunity. However, intracellular antioxidant systems, including glutathione (GSH) system and thioredoxin (Trx) system, limit the accumulation of ROS, resulting in compromised PDT and insufficient immune stimulation. Herein, we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a (PPa) and cisplatin prodrug Pt–COOH(IV) (Pt (IV)) based on hydroxyethyl starch (HES) to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses. Specifically, HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt (IV), and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt (IV). PtHPs improved PPa photostability while retaining PPa photodynamic properties. <em>In vitro</em> experiments showed that PtHPs reduced GSH, inhibited Trx system and had better cell-killing effect and ROS generation ability. Subcutaneous tumor models showed that PtHPs had good safety and tumor inhibition effect. Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells, induced T cell-mediated immune responses, and thus suppressed the growth of both primary and distal tumors. This study reports a novel platinum-based nanomedicine and provides a new strategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100950"},"PeriodicalIF":10.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信