Hyaluronic acid conjugates with controlled oleic acid substitution as new nanomaterials for improving ocular co-delivery of cyclosporine A and oleic acid

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Hai V. Ngo , Hy D. Nguyen , Beom-Jin Lee
{"title":"Hyaluronic acid conjugates with controlled oleic acid substitution as new nanomaterials for improving ocular co-delivery of cyclosporine A and oleic acid","authors":"Hai V. Ngo ,&nbsp;Hy D. Nguyen ,&nbsp;Beom-Jin Lee","doi":"10.1016/j.ajps.2024.101009","DOIUrl":null,"url":null,"abstract":"<div><div>A structural conjugate (HOC) of polysaccharide, hyaluronic acid (HA) with different ratios of oleic acid (OA) via cystamine (CYS) linker as a new ocular biomaterial was developed. The HOCs with controlled degrees of substitution of OA (4.6 %, 8.3 % and 12.2 %) were synthesized to form self-assembled HA-CYS-OA nanoparticles (HONs, HON1, HON2, HON3). A poorly water-soluble cyclosporine A (CsA) to be used for the treatment of multifactorial dry eye disease (DED) was chosen as model drug. CsA-loaded HONs exhibited improved solution transparency via solubilizing capacity of HON, and increased <em>in vitro</em> drug permeation compared to Restasis®. The physicochemical properties of CsA-loaded HONs such as nano behaviors, solution transparency, drug release, drug permeation and ocular cytocompatibility were highly variable according to the ratios of OA substitution. Interestingly, this CsA-loaded HON1 as optimal ocular nanoformulation showed markedly augmented macrophage polarization into the M2 phenotype, downregulated the expression of proinflammatory cytokines levels in LPS-induced M1 macrophage, and effectively inhibited VEGF-induced endothelial cell proliferation and capillary-like tube formation by the synergistic effect of CsA and HON1 containing OA at the same time. Collectively, the current fatty acid conjugated to HA, named fattigation platform, providing the roles and physicochemical properties via structural features of HA could be a promising co-delivery strategy of drug and fatty acid for DED and other ophthalmic disease treatments.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 1","pages":"Article 101009"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624001260","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

A structural conjugate (HOC) of polysaccharide, hyaluronic acid (HA) with different ratios of oleic acid (OA) via cystamine (CYS) linker as a new ocular biomaterial was developed. The HOCs with controlled degrees of substitution of OA (4.6 %, 8.3 % and 12.2 %) were synthesized to form self-assembled HA-CYS-OA nanoparticles (HONs, HON1, HON2, HON3). A poorly water-soluble cyclosporine A (CsA) to be used for the treatment of multifactorial dry eye disease (DED) was chosen as model drug. CsA-loaded HONs exhibited improved solution transparency via solubilizing capacity of HON, and increased in vitro drug permeation compared to Restasis®. The physicochemical properties of CsA-loaded HONs such as nano behaviors, solution transparency, drug release, drug permeation and ocular cytocompatibility were highly variable according to the ratios of OA substitution. Interestingly, this CsA-loaded HON1 as optimal ocular nanoformulation showed markedly augmented macrophage polarization into the M2 phenotype, downregulated the expression of proinflammatory cytokines levels in LPS-induced M1 macrophage, and effectively inhibited VEGF-induced endothelial cell proliferation and capillary-like tube formation by the synergistic effect of CsA and HON1 containing OA at the same time. Collectively, the current fatty acid conjugated to HA, named fattigation platform, providing the roles and physicochemical properties via structural features of HA could be a promising co-delivery strategy of drug and fatty acid for DED and other ophthalmic disease treatments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信