{"title":"Discrete mechanics on unitary octonions","authors":"J. Grabowski, Z. Ravanpak","doi":"10.1142/S0219887821500936","DOIUrl":"https://doi.org/10.1142/S0219887821500936","url":null,"abstract":"In this article we generalize the discrete Lagrangian and Hamiltonian mechanics on Lie groups to non-associative objects generalizing Lie groups (smooth loops). This shows that the associativity assumption is not crucial for mechanics and opens new perspectives. As a working example we obtain the discrete Lagrangian and Hamiltonian mechanics on unitary octonions.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81201550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete linear canonical evolution","authors":"Jakub K'aninsk'y","doi":"10.1063/5.0038814","DOIUrl":"https://doi.org/10.1063/5.0038814","url":null,"abstract":"This work builds on an existing model of discrete canonical evolution and applies it to the general case of a linear dynamical system, i.e., a finite-dimensional system with configuration space isomorphic to $ mathbb{R}^{q} $ and linear equations of motion. The system is assumed to evolve in discrete time steps. The most distinctive feature of the model is that the equations of motion can be irregular. After an analysis of the arising constraints and the symplectic form, we introduce adjusted coordinates on the phase space which uncover its internal structure and result in a trivial form of the Hamiltonian evolution map. For illustration, the formalism is applied to the example of massless scalar field on a two-dimensional spacetime lattice.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86251424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics for Averages over Classical Orthogonal Ensembles","authors":"T. Claeys, Gabriel Glesner, A. Minakov, Meng Yang","doi":"10.1093/IMRN/RNAA354","DOIUrl":"https://doi.org/10.1093/IMRN/RNAA354","url":null,"abstract":"We study averages of multiplicative eigenvalue statistics in ensembles of orthogonal Haar distributed matrices, which can alternatively be written as Toeplitz+Hankel determinants. We obtain new asymptotics for symbols with Fisher-Hartwig singularities in cases where some of the singularities merge together, and for symbols with a gap or an emerging gap. We obtain these asymptotics by relying on known analogous results in the unitary group and on asymptotics for associated orthogonal polynomials on the unit circle. As consequences of our results, we derive asymptotics for gap probabilities in the Circular Orthogonal and Symplectic Ensembles, and an upper bound for the global eigenvalue rigidity in the orthogonal ensembles.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89837861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy cutoff, effective theories, noncommutativity, fuzzyness: the case of $O(D)$-covariant fuzzy spheres","authors":"G. Fiore, F. Pisacane","doi":"10.22323/1.376.0208","DOIUrl":"https://doi.org/10.22323/1.376.0208","url":null,"abstract":"Projecting a quantum theory onto the Hilbert subspace of states with energies below a cutoff $overline{E}$ may lead to an effective theory with modified observables, including a noncommutative space(time). Adding a confining potential well $V$ with a very sharp minimum on a submanifold $N$ of the original space(time) $M$ may induce a dimensional reduction to a noncommutative quantum theory on $N$. Here in particular we briefly report on our application of this procedure to spheres $S^dsubsetmathbb{R}^D$ of radius $r=1$ ($D=d!+!1>1$): making $overline{E}$ and the depth of the well depend on (and diverge with) $Lambdainmathbb{N}$ we obtain new fuzzy spheres $S^d_{Lambda}$ covariant under the {it full} orthogonal groups $O(D)$; the commutators of the coordinates depend only on the angular momentum, as in Snyder noncommutative spaces. Focusing on $d=1,2$, we also discuss uncertainty relations, localization of states, diagonalization of the space coordinates and construction of coherent states. As $Lambdatoinfty$ the Hilbert space dimension diverges, $S^d_{Lambda}to S^d$, and we recover ordinary quantum mechanics on $S^d$. These models might be suggestive for effective models in quantum field theory, quantum gravity or condensed matter physics.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90640267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perfect Integrability and Gaudin Models","authors":"Kang Lu","doi":"10.3842/sigma.2020.132","DOIUrl":"https://doi.org/10.3842/sigma.2020.132","url":null,"abstract":"We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with periodic and regular quasi-periodic boundary conditions.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78280650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-holonomic and Quasi-integrable deformations of the AB Equation","authors":"K. Abhinav, Indranil Mukherjee, P. Guha","doi":"10.1016/j.physd.2022.133186","DOIUrl":"https://doi.org/10.1016/j.physd.2022.133186","url":null,"abstract":"","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74303840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gamal Mograby, Maxim S. Derevyagin, G. Dunne, A. Teplyaev
{"title":"Hamiltonian systems, Toda lattices, solitons, Lax pairs on weighted Z-graded graphs","authors":"Gamal Mograby, Maxim S. Derevyagin, G. Dunne, A. Teplyaev","doi":"10.1063/5.0025475","DOIUrl":"https://doi.org/10.1063/5.0025475","url":null,"abstract":"We consider discrete one dimensional nonlinear equations and present the procedure of lifting them to Z-graded graphs. We identify conditions which allow one to lift one dimensional solutions to solutions on graphs. In particular, we prove the existence of solitons {for static potentials} on graded fractal graphs. We also show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76442964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D topological models and Heegaard splitting. II. Pontryagin duality and observables","authors":"F. Thuillier","doi":"10.1063/5.0027779","DOIUrl":"https://doi.org/10.1063/5.0027779","url":null,"abstract":"In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85964640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sklyanin-like algebras for (q-)linear grids and (q-)para-Krawtchouk polynomials","authors":"G. Bergeron, J. Gaboriaud, L. Vinet, A. Zhedanov","doi":"10.1063/5.0024444","DOIUrl":"https://doi.org/10.1063/5.0024444","url":null,"abstract":"S-Heun operators on linear and $q$-linear grids are introduced. These operators are special cases of Heun operators and are related to Sklyanin-like algebras. The Continuous Hahn and Big $q$-Jacobi polynomials are functions on which these S-Heun operators have natural actions. We show that the S-Heun operators encompass both the bispectral operators and Kalnins and Miller's structure operators. These four structure operators realize special limit cases of the trigonometric degeneration of the original Sklyanin algebra. Finite-dimensional representations of these algebras are obtained from a truncation condition. The corresponding representation bases are finite families of polynomials: the para-Krawtchouk and $q$-para-Krawtchouk ones. A natural algebraic interpretation of these polynomials that had been missing is thus obtained. We also recover the Heun operators attached to the corresponding bispectral problems as quadratic combinations of the S-Heun operators","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80994192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergent dynamics of the Lohe Hermitian sphere model with frustration","authors":"Seung‐Yeal Ha, Myeongju Kang, Hansol Park","doi":"10.1063/5.0038769","DOIUrl":"https://doi.org/10.1063/5.0038769","url":null,"abstract":"We study emergent dynamics of the Lohe hermitian sphere(LHS) model which can be derived from the Lohe tensor model cite{H-P2} as a complex counterpart of the Lohe sphere(LS) model. The Lohe hermitian sphere model describes aggregate dynamics of point particles on the hermitian sphere $bbhbbs^d$ lying in ${mathbb C}^{d+1}$, and the coupling terms in the LHS model consist of two coupling terms. For identical ensemble with the same free flow dynamics, we provide a sufficient framework leading to the complete aggregation in which all point particles form a giant one-point cluster asymptotically. In contrast, for non-identical ensemble, we also provide a sufficient framework for the practical aggregation. Our sufficient framework is formulated in terms of coupling strengths and initial data. We also provide several numerical examples and compare them with our analytical results.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78933378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}