酉八元上的离散力学

J. Grabowski, Z. Ravanpak
{"title":"酉八元上的离散力学","authors":"J. Grabowski, Z. Ravanpak","doi":"10.1142/S0219887821500936","DOIUrl":null,"url":null,"abstract":"In this article we generalize the discrete Lagrangian and Hamiltonian mechanics on Lie groups to non-associative objects generalizing Lie groups (smooth loops). This shows that the associativity assumption is not crucial for mechanics and opens new perspectives. As a working example we obtain the discrete Lagrangian and Hamiltonian mechanics on unitary octonions.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete mechanics on unitary octonions\",\"authors\":\"J. Grabowski, Z. Ravanpak\",\"doi\":\"10.1142/S0219887821500936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we generalize the discrete Lagrangian and Hamiltonian mechanics on Lie groups to non-associative objects generalizing Lie groups (smooth loops). This shows that the associativity assumption is not crucial for mechanics and opens new perspectives. As a working example we obtain the discrete Lagrangian and Hamiltonian mechanics on unitary octonions.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219887821500936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219887821500936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将李群上的离散拉格朗日和哈密顿力学推广到推广李群(光滑环)的非结合对象。这表明结合律假设对力学并不重要,并开辟了新的视角。作为一个实例,我们得到了酉八元上的离散拉格朗日力学和哈密顿力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete mechanics on unitary octonions
In this article we generalize the discrete Lagrangian and Hamiltonian mechanics on Lie groups to non-associative objects generalizing Lie groups (smooth loops). This shows that the associativity assumption is not crucial for mechanics and opens new perspectives. As a working example we obtain the discrete Lagrangian and Hamiltonian mechanics on unitary octonions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信